Molecular Mechanics Geometry Optimization and Excited – State properties of Cardioprotective Drug 4, 4'-(2S)-Propane-1, 2-Diyldipiperazine-2, 6-Dione (Dexrazoxane)

 

 I.E. Otuokere and F. J. Amaku

 Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria.                                     

*Corresponding Author E-mail: ifeanyiotuokere@gmail.com

 

ABSTRACT:

Dexrazoxane (4,4'-(2S)-propane-1,2-diyldipiperazine-2,6-dione)  a cyclic derivative of edetic acid, is a site-specific cardioprotective agent that effectively protects against anthracycline-induced cardiac toxicity. Geometry optimization was performed using Arguslab software. The atomic coordinates, bond length, bond angles, dihedral angles, Muliken atomic charges, ZDO atomic charges and final steric energy evaluation of dexrazoxane were calculated. The highest occupied molecular orbitals, lowest unoccupied molecular orbital, electron clouds, and electrostatic potential mapped density surfaces were created. Heat of Formation of dexrazoxane was 622.179600 kcal/mol. The steric energy calculated for dexrazoxane was    0.026350 a.u. (16.535264  kcal/mol) .  SCF energy was found to be -129.162975 au  (-81051.064000 kcal/mol) as calculated by RHF/ AM1 method,  performed by Argusl ab 4.0.1 suite. The SCF energy represents the most feasible energy where dexrazoxane would bind to the receptor for effective protection against anthracycline-induced cardiac toxicity.

 

KEYWORDS: Arguslab software, dexrazoxane, molecular mechanics, in silico, geometry optimization.


 

 

INTRODUCTION:

Dexrazoxane (4,4'-(2S)-propane-1, 2-diyldipiperazine-2,6-dione)  a cyclic derivative of edetic acid, is a site-specific cardioprotective agent that effectively protects against anthracycline-induced cardiac toxicity[1]. Dexrazoxane is approved in the US and some European countries for cardioprotection in women with advanced and/or metastatic breast cancer receiving doxorubicin; in other countries dexrazoxane is approved for use in a wider range of patients with advanced cancer receiving anthracyclines [2]. As shown in clinical trials, intravenous dexrazoxane significantly reduces the incidence of anthracycline-induced congestive heart failure (CHF) and adverse cardiac events in women with advanced breast cancer or adults with soft tissue sarcomas or small-cell lung cancer [3].

 

As a derivative of EDTA, dexrazoxane chelates iron and thus reduces the number of metal ions complexed with anthracycline and, consequently, decrease the formation of superoxide radicals [4].The exact chelation mechanism is unknown, but it has been postulated that dexrazoxane can be converted into ring-opened form intracellularly and interfere with iron-mediated free radical generation that is in part thought to be responsible for anthryacycline induced cadiomyopathy. It was speculated that dexrazoxane could be used for further investigation to synthesize new antimalarial drugs [5].

 

Arguslab [6] is the electronic structure program that is based on the quantum mechanics; it predicts the potential energies, molecular structure, geometry optimization of structure, vibration frequencies of coordinates of atoms, bond length, bond angles and reaction pathway [7]. Geometry optimization is fundamental component of molecular modeling. The determination of a low-energy conformation for a given force field can be the final objective of the computation. Alternatively, the minimum for the system on the specified potential energy surface, in a local or globe sense can serve as starting or reference point for subsequent calculation. The energy (E) of molecule is calculated as a sum of terms as in equation 1

 

E = E stretching +E bending +E torsion +E Vander Waals + E electrostatic+ E hydrogen bond + crossterm. (Eqn 1)

 

These terms are importance for the accurate calculation of geometry properties of molecules. The set of energy functions and the corresponding parameters are called a force field [8].

Molecular mechanics method calculates the energy as function of coordinates and energy minimization is an integral part of method. A molecular geometry is constructed by using computer graphics techniques and the atom moved without breaking bonds using an energy minimization technique until the net force on all atoms vanish and the total energy of the molecule reaches a minimum. Structure of molecule corresponding to this energy minimum is one of the stable conformations of the molecule but not necessarily the most stable.

 

MATERIALS AND METHOD:

The three dimensional quantitative structure activity relationships  describe the biological activity of molecule with pharmacological potential as a function of their structural properties[9,10]. Chemiformatics have  generated  many tools which are widely used to construct  models, minimization and representations of molecular structure [11, 12]. All conformational analysis (geometry optimization) study was performed on a window based computer using Arguslab [6] and ACD Lab [13] Chem ketch software’s. Dexrazoxane molecule is utilized to determine 3D structure of molecule. The Dexrazoxane- structure was generated by Arguslab, and minimization was performed with the semi-empirical Austin Model 1 (AM1) parameterization[14] .The minimum potential energy was calculated by using geometry convergence function in Arguslab software. In order to determine the allowed conformation the contact distance between the atoms in adjacent residues is examined using criteria for minimum Vander Waal contact distance[15]. Surfaces were created to visualize ground state properties as well as excited state properties such as orbital, electron density, electrostatic potentials (ESP) mapped density. The minimum potential energy was also calculated for drug- receptor interaction through the geometry convergence map.

 

RESULTS AND DISCUSSION:

Prospective view and calculated properties of dexrazoxane molecule is shown in Figure 1. The electron density and active conformation of dexrazoxane by ACDlabs-3D viewer software are shown in Figures 2 and 3 respectively. Figure 4 and 5 shows the highest occupied molecular orbital of molecule (HOMO) and the lowest unoccupied molecular orbital (LUMO) respectively. The positive and negative phases of the orbital are represented by two colors, the blue regions represent a decrease in electron density and the red regions shows increase in electron density.  Figure 6 shows electrostatic potential of molecular ground state mapped onto the electron density surface for the ground state. The color map shows the ESP energy (in hartrees) for the various colors. The red end of the spectrum shows regions of highest stability for a positive test charge, magenta/ blue show the regions of least stability for a positive test charge.  The self-consistent field (SCF) energy is shown in Figure 7. Atomic coordinates of dexrazoxane molecule is given in Table1. Bond length, bond angles and dihedral angles are given in Tables 2, 3 and 4 respectively, which are calculated after geometry optimization of dexrazoxane molecule from Arguslab by using molecular mechanics calculation. Tables 5 and 6 show the Mulliken atomic charges, ZDO atomic charges and ground state dipole (debye) of dexrazoxane respectively. Table 7 shows calculated energy of  dexrazoxane molecule.

 

Heat of Formation of dexrazoxane was 622.1796 kcal/mol. The steric energy calculated for dexrazoxane was    0.02635060 a.u.(16.53526440 kcal/mol)  and SCF energy was found to be -129.1629756809 au (-81051.0640 kcal/mol) as calculated by RHF/ AM1 method, as performed by ArgusLab 4.0.1 suite. The geometry convergence map of dexrazoxane clearly shows a decrease in potential energy with the progress of circle. SCF was obtained as the minimum potential energy which is the needed energy for the interaction of drug with the receptor. The self-consistent field (SCF) energy is the average interaction between a given particle and other particles of a quantum-mechanical system consisting of many particles. Beacause the problem of many interacting particles is very complex and has no exact solution; calculations are done by approximate methods. One of the most often used approximated methods of quantum mechanics is based on the interaction of a self-consistent field, which permits the many-particle problem to be reduced to the problem of a single particle moving in the average self-consistent field produced by the other particles [16]. It should be noted that the Mulliken charges do not reproduce the electostatic potentials of a molecule very well. Mulliken charges were calculed by determining the electron population of each atom as defined by the basis functions [17].The standard heat of formation of a compound is the enthalpy change for the formation of 1 mole of the compound from its constituent elements in their standard states at 1 atmosphere. Its symbol is ΔHfθ.

 

 

Figure 1: Prospective view of dexrazoxane by ACD/ChemSketch


 

Figure 2: Electron density clouds of dexrazoxane by ACDlabs 3D viewer.

 


 

Figure 3: Prospective view of active conformation of dexrazoxane by Arguslab.

 

Figure 4: Highest occupied molecular orbital’s (HOMO) of dexrazoxane.


 

Figure 5: Lowest unoccupied molecular orbital’s (LUMO) of dexrazoxane.

 

Figure 6: Electrostatic potential mapped density of dexrazoxane.

 

 


Figure 7: SCF energy of dexrazoxane.

 

Table 1: Atomic coordinates of dexrazoxane.

 

S.No

Atoms

X

Y

Z

 

      1

   C

   20.861500

 -36.671100

  0.000000

 

      2

   C

   20.861500

 -38.001100

  0.000000

 

      3

   N

   19.709600

 -36.006100

  0.000000

 

      4

   N

   19.709600

 -38.666100

  0.000000

 

      5

   C

   18.557800

 -36.671100

  0.000000

 

      6

   C

   18.557800

 -38.001100

  0.000000

 

      7

   C

   19.709500

 -34.676100

  0.000000

 

      8

   C

   20.861300

 -34.011100

  0.000000

 

      9

   N

   20.861300

 -32.681100

  0.000000

 

    10

   C

   19.709500

 -32.016100

  0.000000

 

    11

   C

   22.013200

 -32.016000

  0.000000

 

    12

   C

   19.709500

 -30.686000

  0.000000

 

    13

   C

   22.013200

 -30.686100

  0.000000

 

    14

   N

   20.861300

 -30.021100

  0.000000

 

    15

   C

   22.013200

 -34.676100

  0.000000

 

    16

   O

   22.013300

-38.666200

  0.000000

 

    17

   O

   17.406000

 -38.666100

  0.000000

 

    18

   O

   23.165000

 -30.021100

  0.000000

 

    19

   O

   18.557700

 -30.021000

  0.000000

 

    20

   H

   19.709500

 -39.996100

  0.000000

 

    21

   H

   20.861300

 -28.691100

  0.000000

 

 

Table 2: Bond length of dexrazoxane

Atoms

Bond length

(C1)-(C2)

     1.458000

(C1)-(N3)

     1.433804

(C2)-(N4)

     1.433804 

(C2)-(O16)

     1.407689

(N3)-(C5)

     1.433804 

(N3)-(C7)

     1.436817 

(N4)-(C6)

     1.433804

(N4)-(H20)

     1.062577

(C5)-(C6)

     1.458000 

(C)6-(O17)

     1.407689 

(C7)-(C8)

     1.464000

(C8)-(N9)

     1.436817

(C8)-(C15)

     1.464000 

(N9)-(C10)

     1.433804 

(N9)-(C11)

     1.433804 

   (C10)-(C12)

     1.458000

(C11)-(C13)

     1.458000 

(C12)-(N14)

     1.433804

(C12)-(O19)

     1.407689 

(C13)-(N14)

     1.433804 

(C13)-(O18)

     1.407689 

(N14)-(H21)

     1.062577

 

 

Table 3: Bond angles of dexrazoxane

Atoms

Bond angles

Alternate angles

(C2)-(C1)-(N3)

 120.000000

 257.053574

   (C1)-(C2)-(N4)

    120.000000

257.053574

(C1)-(C2)-(O16)

 120.000000

 238.736810

(C5)-(N3)-(C1)

 120.000000

 198.144139

(C1)-(N3)-(C7)

 120.000000

197.520556

(N4)-(C2)-(O16)

 120.000000

 325.928547

(C2)-(N4)-(C6)

 120.000000

198.144139

(C2)-(N4)-(H20)

 120.000000

 108.672864

(C5)-(N3)-(C7)

 120.000000

 197.520556

(N3)-(C5)-(C6)

 120.000000

 257.053574

(N3)-(C7)-(C8)

 120.000000

 254.659028

(C6)-(N4)-(H20)

 120.000000

 108.672864

(N4)-(C6)-(C5)

 120.000000

 257.053574

(N4)-(C6)-(O17)

 120.000000

 325.928547

(C5)-(C6)-(O17)

 120.000000

 238.736810

(C7)-(C8)-(N9)

 120.000000

 254.659028

(C7)-(C8)-(C15)

 120.000000

 186.134654

(N9)-(C8)-(C15)

 120.000000

 254.659028

(C8)-(N9)-(C10)

 120.000000

 197.520556

(C8)-(N9)-(C11)

 120.000000

 197.520556

(C10)-(N9)-(C11)

 120.000000

 198.144139

(N9)-(C10)-(C12)

 120.000000

 257.053574

(N9)-(C11)-(C13)

 120.000000

 257.053574

(C10)-(C12)-(N14)

 120.000000

 257.053574

(C10)-(C12)-(O19)

 120.000000

 238.736810

(C11)-(C13)-(N14)

 120.000000

 257.053574

(C11)-(C13)-(O18)

 120.000000

 238.736810

(N14)-(C12)-(O19)

 120.000000

 325.928547

(C12)-(N14)-(C13)

 120.000000

 198.144139

(C12)-(N14)-(H21)

 120.000000

 108.672864

(N14)-(C13)-(O18)

 120.000000

 325.928547

(C13)-(N14)-(H21)

 120.000000

 108.672864

 

 

 

 

Table 4: Dihedral angles of  dexrazoxane

Atomic Bonds

Dihedral angles

(N4)-(C2)-(C1)-(N3)

5.000000

(O16)-(C2)-(C1)-(N3)

5.000000

(C2)-(C1)-(N3)-(C5)

5.000000

(C2)-(C1)-(N3)-(C7)

5.000000

(C1)-(C2)-(N4)-(C6)

2.500000

(C1)-(C2)-(N4)-(H20)

2.500000

(C1)-(N3)-(C5)-(C6)

5.000000

(C1)-(N3)-(C7)-(C8)

5.000000

(C6)-(N4)-(C2)-(O16)

2.500000

(H20)-(N4)-(C2)-(O16)

2.500000

(C2)-(N4)-(C6)-(C5)

2.500000

(C2)-(N4)-(C6)-(O17)

2.500000

(C6)-(C5)-(N3)-(C7)

5.000000

(C5)-(N3)-(C7)-(C8)

5.000000

(N3)-(C5)-(C6)-(N4)

5.000000

(N3)-(C5)-(C6)-(O17)

5.000000

(N3)-(C7)-(C8)-(N9)

5.000000

(N3)-(C7)-(C8)-(C15)

5.000000

(C5)-(C6)-(N4)-(H20)

2.500000

(O17)-(C6)-(N4)-(H20)

2.500000

(C7)-(C8)-(N9)-(C10)

2.500000

(C7)-(C8)-(N9)-(C11)

2.500000

(C10)-(N9)-(C8)-(C15)

2.500000

(C11)-(N9)-(C8)-(C15)

2.500000

(C8)-(N9)-(C10)-(C12)

5.000000

(C8)-(N9)-(C11)-(C13)

5.000000

(C12)-(C10)-(N9)-(C11)

5.000000

(C10)-(N9)-(C11)-(C13)

5.000000

(N9)-(C10)-(C12)-(N14)

5.000000

(N9)-(C10)-(C12)-(O19)

5.000000

(N9)-(C11)-(C13)-(N14)

5.000000

(N9)-(C11)-(C13)-(O18)

5.000000

(C10)-(C12)-(N14)-(C13)

2.500000

(C10)-(C12)-(N14)-(H21)

2.500000

(C11)-(C13)-(N14)-(C12)

2.500000

(C11)-(C13)-(N14)-(H21)

2.500000

(C13)-(N14)-(C12)-(O19)

2.500000

(H21)-(N14)-(C12)-(O19)

2.500000

(C12)-(N14)-(C13)-(O18)

2.500000

(H21)-(N14)-(C13)-(O18)

2.500000

 

 

Table 5: List of Mulliken Atomic Charges and   ZDO Atomic Charges of dexrazoxane                                                                                                                                      

S.No

Atoms

ZDO atomic charges

Mulliken atomic charges

    1

  C

   -4.0000  

-4.0001

    2

    C

   -4.0000

-4.0000

    3

    N

   -3.0000

-3.0001

    4

    N

   -3.0000

 -3.0000

    5

    C

   -4.0000

-4.0000

    6

    C

   -4.0000

-4.0000

    7

    C

   -3.9980

-4.0075

    8

    C

   -2.0232

-2.0096

    9

    N

    4.9847

5.0233

   10

    C

    3.9967

4.0020  

   11

    C

    3.9992

4.0028

   12

    C

    3.9913

4.0069

   13

    C

    4.0000

4.0001

   14

    N

    5.0000

5.0000

   15

    C

   -3.9595

-4.0112

   16

    O

   -2.0000

-2.0000

   17

    O

   -2.0000

-2.0000

   18

    O

    6.0000

6.0000

   19

    O

    4.0089

3.9933

   20

    H

   -1.0000

-1.0000

   21

    H

    1.0000

 1.0000

 

 

 

 

Table 6 : Ground State Dipole (debye) of  dexrazoxane

X

Y

Z

Length

172.062699 

1153.585589  

-0.000000 

1166.346982

 

Table 7: Final steric energy evaluation of  dexrazoxane

S.No.

Force field  Energy components

Values (au)

1

Molecular mechanics bond (Estr)

0.00171273

2

Molecular mechanics angle (Ebend)+ (Estr‑bend)

0.00171273

3

Molecular mechanics dihedral (Etor)

0.00367445

4

Molecular mechanics ImpTor (Eoop)

0.00000000

5

Molecular mechanics vdW (EVdW)

0.02096342

6

Molecular mechanics coulomb (Eqq)

0.00000000

Total

 0.02635060 a.u.                            (16.53526440 kcal/mol)  

 

 

CONCLUSION:

The molecular mechanics steric energy was evaluated in terms of potential energy as a sum of energies associated with bonded interactions  (bond length, bond angle and dihedral angle) as well as non-bonded interactions (Vander Waals and electrostatic). Surfaces were created to visualize excited state properties such as highest occupied molecular orbital’s, lowest unoccupied  molecular orbital’s, electron clouds and  electrostatic potential (ESP) mapped density.   The heat of formation and SCF energy were also evaluated using Arguslab software. The SCF energy represents the most feasible energy where dexrazoxane would bind to the receptor for effective protection against anthracycline-induced cardiac toxicity.

REFERENCES:

1.       Lipshultz SE, Rifai N, Dalton VM, Levy DE, Silverman, LB, Lipsitz, SR, Colan SD, Asselin BL . The Effect of Dexrazoxane on Myocardial Injury in Doxorubicin-Treated Children with Acute Lymphoblastic Leukemia. New England Journal of Medicine  351(2); 2004: 145 –153. 

2.       Bjelogrlic SK, Radic J, Radulovic S, Jokanovic  M, Jovic  V. Effects of Dexrazoxane and Amifostine on Evolution of Doxorubicin Cardiomyopathy in Vivo. Experimental Biology and Medicine 232 (11); 2007: 1414–24.

3.       Kane  RC, McGuinn  WD, Dagher  R, Justice  R, Pazdur  R. Dexrazoxane (Totect™): FDA Review and Approval for the Treatment of Accidental Extravasation Following Intravenous Anthracycline Chemotherapy. The Oncologist 13 (4); 2008: 445 – 450.

4.       Jones RL .Utility of dexrazoxane for the reduction of anthracycline-induced cardiotoxicity. Expert Review of Cardiovascular Therapy 6 (10); 2008: 1311 – 1317.

5.       Loyevsky  M, Sacci  JB, Boehme  P, Weglicki W, John  C, Gordeuk  VR. Plasmodium falciparum and Plasmodium yoelii: Effect of the Iron Chelation Prodrug Dexrazoxane on in Vitro Cultures. Experimental Parasitology 91 (2); 1999: 105 – 114. 

6.       Thompson, M.  ArgusLab 4.0.1. Planaria software LLC, Seattle, W.A., 2004

7        Peng C, Ayali PY, Schlegel HB and Frisch MJ (1995). Using redundant internal coordinates to optimize equilibrium geometries and transition states. J.Comp.Chem., 16: 49-51.

8        Cramer CJ and Truhlar DG (1992). AM1-SM2 and PM3- SM3 parameterized SCF solvation models for free energies in aqueous solution. Computer-Aided Mol. Design, 6: 629-666.

9.  Loew GH, Villar HO and Alkorta I. Strategies for indirect computer-aided drug design. Pharmaceut. Res., 10 ; 1993: 475-486.

10.    Csizmadia IG and Enriz RD (2001). Peptide and protein folding. J. Mol. Struct.-Theochem., 543 ; 2001:319-361.

11.    Martin YC. Perspective in drug discovery and design. Springer Publisher, USA, 12; 1998: 3- 23.

12.    Dunn III and Hopfinger AJ. Drug Discovery, Kluwer Academic Publishers. 12 ; 1998 :167-182.

13.    http://www.acdlab.com

14.    Dewar MJS, Zoobisch EG, Healy EF and Stewart JJP.  AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107 ; 1985: 3902-3910.

15.    Simons J, Jorgensen P, Taylor H and Ozment J. Walking on potential energy surfaces. J. Phys. Chem. 87 ; 1983: 2745-2753.

16.    http://www.thefreedictionary.com

17.    http://www.ambermd.org

 

 

 

 

 

 

Received on 24.08.2015                             Modified on 10.09.2015

Accepted on 21.09.2015      ©A&V Publications All right reserved

Res. J. Pharmacology & P’dynamics. 7(3): July-Sept., 2015; Page 137-142

DOI: 10.5958/2321-5836.2015.00026.9