An Ethnopharmacological Review: On Commonly used Anti-Oxidant Plants with Anti-Hypertensive

 

Jhakeshwar Prasad1*, S. Prakash Rao2, Ashish Kumar Netam2, Trilochan Satapathy2

1Associate  Professor, Department of  Pharmacology, Columbia Institute of  Pharmacy, Tekari, Raipur (CG)

Pin 493111.

2Department of Pharmacology, Columbia Institute of Pharmacy, Tekari, Raipur (CG) pin 493111.

*Corresponding Author E-mail: Spr_pharma@yahoo.co.in

 

ABSTRACT:

Hypertension is a chronic disorder characterized by a persistently elevated blood pressure exceeding 140/90 mmHg or greater. Many antihypertensive agents are used for treatment of hypertension like Thiazide, loop, and potassium - sparing diuretics,  calcium channel blockers,  Angiotensin - converting enzyme inhibitors, Central α 2 - adrenergic agonists, β - adrenergic and α 1/β - adrenergic antagonists, Peripheral α 1- adrenergic antagonists, and Direct - acting vasodilators etc. But these drugs have some side effect s like diuretics may cause muscle cramps, dizziness, extreme tiredness, dehydration, blurred vision, abnormal heart rate, skin rash, and others. The ACE inhibitors are caused by cough, skin rash, vomiting, kidney failure, fever, sore throat, diarrhea, and others. And use of calcium channel blockers are caused by fatigue, headache, diarrhea, constipation, edema, and others side effects. The use of medicinal plants for treatment of hypertension is very common because these remedies are easily available and low cost than novel pharmaceuticals. Herbs do not cause side effects like weakness, tiredness, drowsiness, impotence, cold hands and feet, depression, insomnia, abnormal heartbeats, skin rash, dry mouth, dry cough, stuffy nose, headache, dizziness, swelling around eyes, constipation or diarrhea, fever etc. Hence the present article focuses on different medicinal plants worldwide used for hypertension rather than on medications. The present article emphasizes on causes for hypertension, its signs, symptoms, preventive measures as well as its safer options of treatments.

 

KEYWORDS: Hypertension, Antihypertensive agent, Medicinal plants and their Pharmacological activity.

 

 


INTRODUCTION:

Cardiovascular disease (CVD) remains the leading cause of debility and premature death and hence a major public health problem. Out of the major risk factors, which include diabetes, smoking, and dyslipidemia, hypertension is by far the most prevalent trigger for CVDs, and its comorbidity with other risk factors is even more puissant. [1]

 

Hypertension is responsible for around 16.5% of annual deaths worldwide and is indeed the main cause of morbidity and mortality associated with CVDs. [2] By 2030, the annual death toll is estimated to reach 23.5 million people In addition to being a major player in the onset of diseases such as atherosclerosis, stroke, peripheral artery disease, heart failure, and coronary artery disease, hypertension can also lead to kidney damage, dementia, or blindness. [3,4]  It is important to note that May 17th of every year has been designated World Hypertension Day by the International Society of Hypertension (ISH), and the theme for 2013 World Health Day (7th April) was Hypertension, and hence a focus of considerable attention.

 

Hypertension is defined as having a systolic blood pressure (SBP) of ≥140 mmHg and a diastolic blood pressure (DBP) of ≥90 mmHg (≥140/≥90 mmHg). [5] Every 20/10 (SBP/DBP) mmHg increase indicates a higher risk stage of hypertension; stage 1 (140–159/90–99 mmHg), stage 2 (≥160/≥100 mmHg; Archer, 2000; Weber et al., 2014) with the latter stage requiring immediate medical attention [6] Importantly, the American Society of Hypertension and ISH recommend that individuals with blood pressure of 120– 139/80–89 mmHg be considered as pre-hypertensives. For targeted therapeutic interest, it is essential to realize that pre-hypertensive individuals are three times more likely to succumb to hypertension at a later stage of life than their normotensive counterparts. [7] It is important to note that according to the Eighth Joint National Committee, it is recommended that for the general population, pharmacologic treatment be started at an SBP of 150 mmHg or DBP of 90 mmHg. However, for patients with Chronic Kidney Disease, treatment shall begin when the values of SBP and DBP reach 140 or 90 mmHg or higher, respectively. [8] Elevated blood pressure is categorized into types: primary (essential) and secondary hypertension. Secondary hypertension, which affects 5–10% of hypertensive individuals, is due to identifiable causes, such as diabetes and renal damage, and thus has a relatively higher chance of being treated. On the other hand, essential hypertension is acquired by multiple factors such as diet, age, lifestyle, neurohumoral activity, and interactions. [9] Since its etiology may be more difficult to ascertain or establish, essential hypertension is more difficult to manage. Interestingly, the percentage of patients with essential hypertension (90–95%) far exceed those with secondary hypertension. [10] Many drugs, ranging from diuretics (Indapamide, Furosemide, Amiloride), sympathoplegic agents (clonidine, reserpine), renin inhibitor (Aliskiren), angiotensin converting enzymes (ACE) inhibitors (Enalapril, Captopril, Quinapril), angiotensin receptors blockers (ARBs—Losartan, Irbesartan, Olmesartan), calcium channel blockers (Nifedipine, Verapamil, Diltiazem), α-adrenergic blockers (Prazosin, Doxazosin), β-adrenergic blockers (Nebivolol, Atenolol) to vasodilators (Minoxidil, sodium nitroprusside), are used to manage blood pressure levels in hypertensive patients. [11,12] However, a point of interest to physicians and health-care practitioners is the alarming, and rather unfortunate, reality that high blood pressure is managed in only 34% of hypertensive patients. [13] The major concerns that often delay treatment allude to higher costs of antihypertensive drugs, [14] their availability and accessibility, the undesired side effects of antihypertensive drugs, [15] and the reduced patient compliance to consume more than a pill per day. Taking this into account, hypertensive patients, especially those dwelling in rural areas, seek alternative approaches such as herbal remedies for their treatment of hypertension and other diseases.


 

 

Figure: 1 A schematic diagram indicating the favorable effects of plants/herbs on the molecular pathogenesis of hypertension. Different molecular, biochemical, and cellular pathways are favorably modulated by herbs/plants or their extracts.

 

Table 1: Commonly used antihypertensive plants with antioxidant activity.

Herb

Effect

Concentration/Dose

Experimental setting/Model

References

Allium sativum

Scavenges ROS

3 mg/ml

Human neutrophils

 

 

Increases antioxidants

500 mg/ml

2K-1C rats

 

 

 

125–2000 mg/kg

Wistar albino rats’ hearts

 

 

Reduces NADPH activity

150 and 400 mg/kg

Fructose-fed rats

 [16]

Andrographis

Scavenges ROS

0.7–2.8 g/kg

SHR

 

paniculata

 

 

 

 

Apium graveolens

Increases antioxidants

1 ml/kg (of different extracts)

CCl4-treated mice

 

Camellia sinensis

Scavenges ROS

1–5 µg/ml

Superoxide-generating system

 

 

Decreases NADPH oxidase

13.3 g/L

STZ fed SHR

 

 

Increases antioxidants

0.1%

Streptozotocin (STZ)-fed Sprague-Dawley rats

 

 

 

1% Green Tea Extract

C57BL/6 mice

 

 

Inhibits eNOS uncoupling

5 g/kg

STZ fed SHR

 [17]

Coptis chinensis

Increases antioxidants

150 mg/kg

Atherosclerotic renovascular disease (ARD)

 

 

 

 

Wistar rats

 

 

Decreases NADPH oxidase

150 mg/kg

ARD Wistar rats

 

Coriandrum

Inactivates ROS produced

200 and 300 mg/kg

Isoproterenol-induced cardiotoxicity in male

  [18]

sativum

by β-adrenoceptor

 

Wistar rats.

 

 

stimulation

 

 

 

 

Increases antioxidants

200 mg/kg

CCl4-induced hepatotoxicity in Wistar albino

 

 

 

 

rats

 

Crataegus spp.

Scavenges ROS

100–400 µg/ml

enzymatic assay

 

Crocus sativus

Reduces oxidative stress

200 mg/kg

BeCl2-treated Wistar rats

 

 

Increases antioxidants

200 mg/kg

BeCl2-treated Wistar rats

 

 

 

20–80 mg/kg

Genotoxins-treated Swiss albino mice

 [19]

Hibiscus sabdariffa

Scavenges ROS

2 mg/ml

CCl4-induced hepatotoxicity in rat liver

 

 

Increases antioxidants

10 g extract (powder),

Healthy humans

 

 

 

dissolved in 200 mL water

 

 

Panax

Increases antioxidants

60–120 µM

Hypoxia/Reoxygenation-induced oxidative

   [20]

 

 

 

injury in rat cardiomyocytes

 

Salviae miltiorrhizae

Reduces ROS

100 µg/ml

Sprague-Dawley rat thoracic aortic VSMCs

 

 

Increases antioxidants

5 g extract/time, twice per

Chronic heart disease (CHD) patients

 

 

 

day; 60 days

 

 

Zingiber officinale

Scavenges ROS

0–60 µM

Enzymatic assay

 

 

Inhibits lipid peroxidation

0.05 mg/ml

Rat heart

[21]

Agelanthus dodoneifolius

Scavenges ROS

0.125 mg/ml

DPPH enzymatic assay

[22]

Alpinia zerumbet

Reduces oxLDL

0.1 mg/L

Human umbilical vein endothelial cells

 

Apocynum venetum

Scavenges ROS

10 µg/ml

Rat isolated aortic rings

 

Arctium lappa

Scavenges ROS

4.79 µg/ml

DPPH enzymatic assay

 

Cnidium monnieri

Increases antioxidants

20 mg/kg

Renovascular hypertensive rats

 

Cnidium officinale

Scavenges ROS

0.32–200 µg/ml

DPPH enzymatic assay

 

Desmodium gangeticum

Reduces ROS

50–200 µg/ml

Isoproterenol-treated cardiomyocytes

 

Elettaria cardamomum

Increases antioxidants

3 g/day

Stage 1 hypertensive patients

 [23]

Embelia ribes

Increases antioxidants

100 mg/kg

Isoproterenol-treated rats

 

 

 

50 mg/kg

High fat-fed rats

 

Ferula gummosa

Increases antioxidants

90 mg/kg

SHR

 

Gastrodia elata Blume

Decreases LDL cholesterol

6 mg/kg/day

High fat-fed SHR

 

Kalanchoe pinnata

Increases antioxidants

25–100 mg/kg/day

High salt-loaded rats

 

Lepidium sativum

Scavenges ROS

500 µg (of the lyophilized extract in a tube)

DPPH enzymatic assay

 [24]

Melothria maderaspatana

Increases antioxidants

50, 100, and 200 mg/kg

DOCA-salt hypertensive rats

 

Ocimum basilicum

Scavenges ROS

IC50 range: 8.17–24.91 µg/ml (for different solvent-extractions)

DPPH enzymatic assay

 

Phyllanthus amarus

Increases antioxidants

200 mg/kg

Male Albino Wistar rats

 

 

Scavenges oxidants

0–1 mg/ml (varies for each assay)

DPPH enzymatic assay (and other

 

 

 

 

oxidant scavenging assays)

 

Picrasma quassiodes

Regulates SOD and  NO

100 and 200 mg/kg

SHR

 [25]

 

Table 2: Commonly used antihypertensive plants with vasorelaxant activity.

Herb

Effect

Concentration/Dose

Experimental setting/Model

References

Allium sativum

Increases NO

Reported only as garlic extract

Human umbilical vein endothelial cells

26]

 

 

0.8 mg/ml

Rat isolated pulmonary arteries

 

 

Increases eNOS

150 and 400 mg/kg/day

Fructose-fed Wistar rats

 

 

Increases H2S

500 µg/ml

Sprague-Dawley rat aortic rings

 

 

Inhibits ACE

 

Fructose-fed rats

 

Andrographis paniculata

Increases NO

1 mg/ml

Isolated hearts from Sprague-Dawley rats

27]

 

Blocks Ca2+ channels

1 mg/ml

Isolated hearts from Sprague-Dawley rats

 

 

Reduces ACE

0.7–2.8 g/kg

SHR

 

Apium graveolens

Blocks Ca2+ influx

48 mM

Rat isolated aortic rings

 

Bidens pilosa L.

Ca2+ antagonists

0.32 mg/ml

KCl-treated rat aorta

 

 

Mechanism not determined

40 mg/ml

High-fructose fed Wistar rats

28]

Camellia sinensis

Increases flow-mediated

2 g in 250 ml boiled water/day

Brachial arteries of subjects with elevated

 

 

dilation (FMD)

 

cholesterol level

 

 

 

450 and 900 mL

Brachial arteries of coronary heart disease

 

 

 

 

patients

 

 

Increases NO

580 mg

Healthy male smokers (preclinical pilot)

 

 

 

 

 

 

 

Inhibits eNOS uncoupling

5 g/kg daily

Diabetic SHR

 

 

Blocks AT1 receptor

0.1%

STZ-fed Sprague-Dawley rats

 [29]

Coptis chinensis

Upregulates eNOS

2.99, 3.45, 5.81, and 6.14 g/L

Rat isolated cardiomyocytes (insulin-induced

 

 

expression

 

hypertrophy)

 

 

 

2.99, 3.45, 5.81, and 6.14 g/L

Isolated thoracic aorta rings from CIHH rats

 

 

Decreases EMP

1.2 g/L

Healthy humans

 

 

Blocks Ca2+ channels

5.18 and 6.14 g/L

Isolated thoracic aorta rings from CIHH rats

 

Crataegus spp.

Activates eNOS

100 mg/kg/day

L-NAME-induced hypertensive rats

 

 

 

100 µg

Male Wistar Rat isolated aortic rings

 

 

 

100 µg

Human isolated mammarian arterial rings

 

Crocus sativus

Activates eNOS

0.1–0.5 ml/kg

ischemia-reperfusion (IR) in rats

 [30]

 

Blocks Ca2+ channels

1 and 5 mg%

Guinea pig Isolated heart

 

Cymbopogon citratus

Increases NO bioavailability

30 mg/ml

Isolated aorta from SHR

 [31]

 

 

30 mg/ml

Isolated aorta from WKR

 

 

 

1–20 mg/kg

Rat isolated thoracic aorta

 

 

Inhibits Ca2+-influx

1–20 mg/kg

Rat isolated thoracic aorta

 

Hibiscus sabdariffa

Increases NO

0.3 mg/ml

SHR isolated aorta

 [32]

 

 

1500–2500 mg/kg

Not clear

 

 

Blocks Ca2+ channels

10 ng−1 mg/ml

SHR isolated aorta

 

 

 

 

 

 

Nigella sativa

Blocks Ca2+ channels

2–14 mg/ml

Rat isolated aorta

 [33]

 

 

 

 

 

Panax

Increases eNOS

150 µg/ml

SHR adrenal medulla

 

 

 

 

 

 

 

Salviae miltiorrhizae

Increases NO

0–10 mg/ml (of SalB, a major

Rabbit thoracic aortic rings

 

 

 

ingredient of this plant)

 

 

 

Opens KATP channels

0.25–2 mg/ml

SHR aorta

 

 

Blocks Ca2+ channels

300–1000 µg/ml

Porcine coronary rings

 

 

 

10.39 ± 1.69 µM

Rat coronary arterial rings

[34]

 

Reduces ACE activity

0.05 mg/ml

Rat heart

 

 

 

Table 3: Commonly used antihypertensive plants with anti-inflammatory activity.

Herb

Effect

Concentration/Dose

Experimental setting/Model

References

Allium sativum

Inhibits NF-κB

250 mg/kg

High fructose-fed rats

  [35]

 

Reduces VCAM-1

150 mg/kg

Fructose-fed Wistar rats

 

Andrographis paniculata

Inhibits NF-κB

4 mg/kg

Npr1 gene-knockout mice

 

Bidens pilosa L.

Inhibits NF-κB and TNF-alpha activation

10–20 µg/ml

LPS-stimulated RAW 264.7

 

 

 

1 µM

 

 

Camellia sinensis

Inhibits NF-κB

5–30 µM (of EGCG)

Human endothelial cells

   [36]

 

Reduces VCAM-1

10–100 µM (of EGCG)

In vitro endothelial cells

 

 

Decreases TNF-α

379 mg

Obese, hypertensive humans

 

Coptis chinensis

Decreases NF-κB

150 mg/kg

Atherosclerotic renovascular rats

   [37]

 

 

25 µM (of Berberine)

Rat aortic endothelial cells

 

 

Inhibits VCAM-1

25 µM (of Berberine)

Rat aortic endothelial cells

 

Coriandrum sativum

Decreases NF-κB

150 µg/ml

LPS-stimulated RAW 264.7

 

Crataegus spp.

Decreases TNF-α

100 mg/kg

STZ-induced diabetic rats

 

 

Decreases IL-6

100 mg/kg

STZ-induced diabetic rats

 

Crocus sativus

Inhibits NF-κB

0.1–0.5 mL/kg/day

Ischemia-reperfusion injury (IRI) in rats

 

Panax

Inhibits NF-κB

2–5 µM (one of its components)

Mouse cardiomyocytes

  [38]

 

 

10 µM (one of its components)

Mouse macrophages

 

 

Decreases TNF-α

10 µM (one of its components)

Mouse macrophages

 

 

Decreases IL-6

10 µM (one of its components)

Mouse macrophages

 

Salviae miltiorrhizae

Decreases TNF-α

100 µg/ml

Human umbilical vein endothelial cells

 

 

Inhibits NF-κB

100 µg/ml

Human umbilical vein endothelial cells

 

 

Inhibits VCAM-1

100 µg/ml

Human umbilical vein endothelial cells

   [39]

Arctium lappa

Suppresses VCAM-1 (aortic endothelia)

100 and 200 mg/kg/day

High fat-fed Sprague-Dawley rat

 

 

 

 

thoracic aorta

 

Carthamus tinctorius

Decreases soluble (plasma) VCAM-1

2.1 g/day

Healthy humans

 

Cirsium japonicum

Decreases NF-κB expression (mast

0.05–0.4 mg/ml

HMC-1 human mast cells

   [40]

 

cells)

 

 

 

Cuminum cyminum

Decreases TNF- α and IL-6 (renal tissue)

200 mg/kg

renovascular hypertensive rats

 

Cynanchum wilfordii

Inhibits VCAM-1 and ET-1 activity

100 and 200 mg/kg/day

High fat/cholesterol-fed

 

 

(aortic endothelia)

 

ApoE-deficient mice

 

Gastrodia elata Blume

Decreases iNOS expression (gastric

0.02 mL/g

Stress-induced gastric lesions in mice

 

Phyllanthus amarus

Decreases NF-κB, TNF-α, and COX-2

0–250 µg/ml (aqueous ethanol)

LPS-treated RAW 264.7

  [41]

 

(RAW 264.7 cells)

or 0–200 µg/ml (hexane)

macrophages

 

 

 

fractions

 

 

 

Table 4: Commonly used antihypertensive plants with anti-proliferative activity.

Herb

Effect

Concentration/Dose

Experimental setting/Model

References

Allium sativum

Induces Cx43 expression

50 µM

Sprague-Dawley rat thoracic aortic

   [42]

 

 

 

VSMCs

 

 

Inhibits Ang-II-induced cell cycle

100 µM (two of its components)

VSMCs isolated from SHR

 

 

progression

 

 

 

Camellia sinensis

Increases HO-1 enzyme

0–50 µM

Human aortic smooth muscle cells

 

Coptis chinensis

Inhibits cardiac hypertrophy

300 mg/kg

Rat isolated cardiomyocytes

 

 

 

 

(insulin-induced hypertrophy)

 

Panax

Inhibits ERK pathway activation

10% of plasma isolated from rats

PDGF-treated rat VSMCs

 

 

 

injected with 200 mg/kg of the extract

 

 

 

Decreases CDK4, pRb, and

20–40 mg/ml

SHR thoracic aortic VSMCs

 

 

cyclin D1

 

 

 

 

Decreases β-galactosidase

20–40 mg/ml

SHR and WKY rat thoracic aortic VSMCs

   [43]

Salviae miltiorrhizae

Inhibits PDGF proliferation

100 µg/ml

Sprague-Dawley rat thoracic aortic

 

 

 

 

VSMCs

 

 

Table 5: Commonly used antihypertensive plants with diuretic activity.

Herb

Effect

Concentration/Dose

Experimental setting/Model

References

Hibiscus sabdariffa

Lowers uric acid concentration

16 g/day

Healthy men

 

 

 

1500–2500 mg/kg

SHR

 

 

Reduces plasma Na+ levels

250 mg

Stage 1 and 2 hypertensive humans

 [44]

Nigella sativa

Increases Na+, K+, and Cl in urine

5 ml/kg/day

SHR

 [45]

 

Herb

Effect/Mechanism

Concentration/Dose

Model

References

Elettaria cardamomum

Increases urine output and enhances

1, 3, and 10 mg/kg

Anesthetized rats

 [46]

 

Na+ and K+ excretion

 

 

 

Lepidium latfolium

Increases urine output and electrolyte

50–100 mg/kg

Rats

 

 

excretion

 

 

 

Lepidium sativum

Increases electrolyte excretion

20 mg/kg

SHR

 

Phyllanthus amarus

Increases urine volume and Na+

80 mg/kg (in rabbits)

Mild hypertensive patients

 

 

levels in serum (humans) and

 

and rabbits

 

 

decreases SBP and DBP (in man)

 

 

   [47]

Tropaeolum majus L

Reduces aldosterone

300 mg/kg ethanolic extract, 200 mg/kg

SHR

 

 

 

 

purified fraction, 10 mg/kg isoquercitrin

 

 

 

Downregulates renal Na+/K+ pump

 

 

 

 

Increases urine volume

 

 

 

Viscum articulatum Burm

Increases urine volume

200 mg/kg/day

L-NAME-treated rats

 

 

Increases urine volume, electrolyte

100, 200, and 400 mg/kg

Male Wistar rats

  [48]

 

excretion and glomerular filtration rate

 

 

 

 

Table 6: Commonly used plants that were studied in clinical trials, and details of these trials.

Herb

Design

Population

Condition

Dose

Duration

Effect

Magnitude of

References

 

 

size

 

 

 

 

change

 

Allium

Double-blind, parallel,

50

Uncontrolled

960 mg/day aged garlic

12 weeks

SBP decrease

10.2 ± 4.3 mmHg

 [49]

sativum

randomized,

 

hypertension

extract

 

 

 

 

 

placebo-controlled

 

 

 

 

 

 

 

 

Placebo-controlled,

6

Mild hypertension

2600 mg/day (4 tablets,

10 days

SBP decrease

17 mmHg

 

 

crossover

 

 

650 mg each) garlic powder

 

 

 

 

 

Double-blind, parallel,

79

Uncontrolled

480 mg/day aged garlic

12 weeks

SBP decrease

11.8 ± 5.4

 

 

randomized,

 

hypertension

extract

 

 

 

 

 

placebo-controlled

 

 

 

 

 

 

 

 

Randomized, parallel,

210

Stage 1

300–1500 mg/day garlic

24 weeks

SBP and DBP

9.2 and

 [50]

 

placebo-controlled

 

hypertension

powder

 

decrease

6.26 mmHg

 

Camellia

Double-blind,

20

Mild hypertension

7.6 g tea leaves in 400 ml

1 h

SBP and DBP

1.7 and 0.9 mmHg

 

sinensis

placebo-controlled

 

 

water

 

increase

(green tea)

 

 

 

 

 

 

 

 

0.7 mmHg each

 

 

 

 

 

 

 

 

(black tea)

 

 

Randomized, parallel,

56

Obese,

379 mg green tea extract

12 weeks

SBP and DBP

4 each mmHg

 

 

placebo-controlled

 

hypertension

 

 

decrease

 

 

 

Randomized, parallel,

95

Mild hypertension

4479 mg (3 cups/day,

24 weeks

SBP and DBP

2 and 2.1 mmHg

   [51]

 

placebo-controlled

 

 

1493 mg each) black tea

 

decrease

 

 

Crocus

Randomized,

30

Healthy

400 mg/day

7 days

SBP and MAP

11 and 5 mmHg

 

sativus

double-blind,

 

 

 

 

decrease

 

 

 

placebo-controlled

 

 

 

 

 

 

 

Hibiscus

Randomized,

75

Mild to moderate

10 g/day dried calyx

4 weeks

SBP and DBP

15.32 and

 

sabdariffa

captopril-controlled

 

hypertension

 

 

decrease

11.29 mmHg

 

 

Randomized,

193

Stage 1 and 2

250 mg dried calyx extract

4 weeks

SBP and DBP

16.59 and

 

 

double-blind,

 

hypertension

 

 

decrease

11.8 mmHg

 

 

Lisinopril-controlled

 

 

 

 

 

 

 

 

Randomized,

65

Pre- and mild

720 mL/day (3 servings,

6 weeks

SBP, DBP, and

7.2, 3.1, and

 [52]

 

double-blind,

 

hypertension

240 mL each) hibiscus tea

 

MAP decrease

4.5 mmHg

 

 

placebo-controlled

 

 

(3.75 g hibiscus)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panax

Randomized,

90

Mild hypertension

300 mg/day P. ginseng

8 weeks

SBP and DBP

3.1 and 2.3 mmHg

 

 

placebo-controlled

 

 

extract

 

decrease

 

 

 

 

 

 

 

 

 

 

 

 

Randomized,

64

Essential

3 g/day P. quinquefolius

12 weeks

SBP decrease

17.4 mmHg

 

 

double-blind,

 

hypertension

 

 

 

 

 

 

placebo-controlled

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Randomized,

23

Healthy

400 mg

3 h

SBP and DBP

4.8 and 3.6 mmHg

   [53]

 

double-blind,

 

 

 

 

decrease

 

 

 

crossover

 

 

 

 

 

 

 

 


CONCLUSION:

This review focuses on recent literature evaluating naturally occurring antioxidants with respect to their impact on hypertension.

 

REFERENCES:

1.       Yang, Y., Chan, S. W., Hu, M., Walden, R., and Tomlinson, B. (2011). Eects of some common food constituents on cardiovascular disease. ISRN Cardiol. 2011:397136. doi: 10.5402/2011/397136

2.       Kizhakekuttu, T. J., and Widlansky, M. E. (2010). Natural antioxidants and hypertension: promise and challenges. Cardiovasc. Ther. 28, e20–e32. doi: 10.1111/j.1755-5922.2010.00137.x

3.       Freedman, B. I., and Cohen, A. H. (2016). Hypertension-attributed nephropathy: what’s in a name? Nat. Rev. Nephrol. 12, 27–36. doi: 10.1038/nrneph.2015.172 Frishman, W. H., Beravol, P., and Carosella, C. (2009).

4.       Cioanca, O., Hritcu, L., Mihasan, M., and Hancianu, M. (2013). Cognitive-enhancing and antioxidant activities of inhaled coriander volatile oil in amyloid beta(1-42) rat model of Alzheimer’s disease. Physiol. Behav. 120, 193–202. doi: 10.1016/j.physbeh.2013.08.006

5.       Tabassum, N., and Ahmad, F. (2011). Role of natural herbs in the treatment of hypertension. Pharmacogn. Rev. 5, 30–40. doi: 10.4103/0973-7847.79097

6.       Archer, J. S. (2000). Evaluation and treatment of hypertension. Prim. Care Update Ob Gyns 7, 1–6. doi: 10.1016/S1068-607X(99)00032-3

7.       Weber, M. A., Schirin, E. L., White, W. B., Mann, S., Lindholm, L. H., Kenerson, J. G., et al. (2014). Clinical practice guidelines for the management of hypertension in the community a statement by the american society of hypertension and the international society of hypertension. J. Hypertens. 32, 3–15. doi: 10.1097/HJH.0000000000000065

8.       James, P. A., Oparil, S., Carter, B. L., Cushman, W. C., Dennison-Himmelfarb, C., Handler, J., et al. (2014). 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 311, 507–520. doi: 10.1001/jama.2013.284427

9.       Susalit, E., Agus, N., Eendi, I., Tjandrawinata, R. R., Nofiarny, D., Perrinjaquet-Moccetti, T., et al. (2011). Olive (Olea europaea) leaf extract eective in patients with stage-1 hypertension: comparison with Captopril. Phytomedicine 18, 251–258. doi: 10.1016/j.phymed.2010.08.016

10.     Wang, Y., Huang, Y., Lam, K. S., Li, Y., Wong, W. T., Ye, H., et al. (2009). Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovasc. Res. 82, 484–492. doi: 10.1093/cvr/cvp078

 

11.     Wang, J., and Xiong, X. (2012). Outcome measures of chinese herbal medicine for hypertension: an overview of systematic reviews. Evid. Based Complem. Alternat. Med. 2012:697237. doi: 10.1155/2012/697237

12.     Xiong, X., Yang, X., Liu, W., Chu, F., Wang, P., and Wang, J. (2013). Trends in the treatment of hypertension from the perspective of traditional chinese medicine. Evid. Based Complement. Alternat. Med. 2013:275279. doi: 10.1155/2013/275279.

13.     Xagorari, A., Papapetropoulos, A., Mauromatis, A., Economou, M., Fotsis, T., and Roussos, C. (2001). Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. J. Pharmacol. Exp. Ther. 296, 181–187.

14.     Pan, S. Y., Zhou, S. F., Gao, S. H., Yu, Z. L., Zhang, S. F., Tang, M. K., et al. (2013). New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid. Based Complement. Alternat. Med. 2013:627375. doi: 10.1155/2013/627375

15.     Das, S., Periyasamy, R., and Pandey, K. N. (2012). Activation of IKK/NF-kappaB provokes renal inflammatory responses in guanylyl cyclase/natriuretic peptide receptor-A gene-knockout mice. Physiol. Genomics 44, 430–442. doi: 10.1152/physiolgenomics.00147.2011

16.     Vazquez-Prieto, M. A., Rodriguez Lanzi, C., Lembo, C., Galmarini, C. R., and Miatello, R.  M. (2011). Garlic and onion attenuates   vascular inflammation and oxidative stress in fructose-fed rats. J. Nutr. Metab. 2011:475216. doi: 10.1155/2011/475216

17.     Faria, A. M., Papadimitriou, A., Silva, K. C., Lopes de Faria, J. M., and Lopes de Faria, J. B. (2012). Uncoupling endothelial nitric oxide synthase is ameliorated by green tea in experimental diabetes by re-establishing tetrahydrobiopterin levels. Diabetes 61, 1838–1847. doi: 10.2337/db11-1241

18.     Patel, D. K., Desai, S. N., Gandhi, H. P., Devkar, R. V., and Ramachandran, A.V. (2012). Cardio protective effect of Coriandrum sativum L. on   isoproterenol induced myocardial necrosis in rats. Food Chem. Toxicol. 50, 3120–3125. doi: 10.1016/j.fct.2012.06.033

19.     Premkumar, K., Abraham, S. K., Santhiya, S. T., and Ramesh, A. (2003). Protective eects of saron (Crocus sativus Linn.) on genotoxins-induced oxidative stress in Swiss albino mice. Phytother. Res. 17, 614–617. doi: 10.1002/ptr.1209

20.     Doh, K. C., Lim, S. W., Piao, S. G., Jin, L., Heo, S. B., Zheng, Y. F., et al. (2013). Ginseng treatment attenuates chronic cyclosporine nephropathy via reducing oxidative stress in an experimental mouse model. Am. J. Nephrol. 37, 421–433. doi: 10.1159/000349921

21.     Akinyemi, A. J., Ademiluyi, A. O., and Oboh, G. (2013). Aqueous extracts of two varieties of ginger (Zingiber ocinale) inhibit angiotensin I-converting enzyme, iron(II), and sodium nitroprusside-induced lipid peroxidation in the rat heart in vitro. J. Med. Food 16, 641–646. doi: 10.1089/jmf.2012.0022

22.     Builders, M. I., Uguru, M. O., and Aguiyi, C. (2012). Antiplasmodial potential of the African mistletoe: Agelanthus dodoneifolius polh and wiens. Indian J. Pharm. Sci. 74, 223–229. doi: 10.4103/0250-474X.106064

23.     Verma, S. K., Jain, V., and Katewa, S. S. (2009). Blood pressure lowering, fibrinolysis enhancing and antioxidant activities of cardamom (Elettaria cardamomum). Indian J. Biochem. Biophys. 46, 503–506.

24.     Kaur, T., Hussain, K., Koul, S., Vishwakarma, R., and Vyas, D. (2013). Evaluation of nutritional and antioxidant status of Lepidium latifolium Linn.: a novel phytofood from Ladakh. PLoS ONE 8:e69112. doi: 10.1371/journal.pone.0069112

25.     Zhao, W., Yu, J., Su, Q., Liang, J., Zhao, L., Zhang, Y., et al. (2013). Antihypertensive eects of extract from Picrasma quassiodes (D. Don) Benn. in spontaneously hypertensive rats. J. Ethnopharmacol. 145, 187–192. doi: 10.1016/j.jep.2012.10.049

26.     Mousa, A. S., and Mousa, S. A. (2007). Cellular eects of garlic supplements and antioxidant vitamins in lowering marginally high blood pressure in humans: pilot study. Nutr. Res. 27, 119–123. doi: 10.1016/j.nutres.2007.01.001

27.     Awang, K., Abdullah, N. H., Hadi, A. H. A., and Fong, Y. S. (2012). Cardiovascular activity of Labdane Diterpenes from andrographis paniculata in isolated rat hearts. J. Biomed. Biotechnol. 2012:876458. doi: 10.1155/2012/876458

28.     Dimo, T., Rakotonirina, S. V., Tan, P. V., Azay, J., Dongo, E., and Cros, G. (2002). Leaf methanol extract of Bidens pilosa prevents and attenuates the hypertension induced by high-fructose diet in Wistar rats. J. Ethnopharmacol. 83, 183–191. doi: 10.1016/S0378-8741(02)00162-9

29.     Thomson, M., Al-Qattan, K., Mansour, M. H., and Ali, M. (2012). Green tea attenuates oxidative stress and downregulates the expression of angiotensin-II AT(1) receptor in renal and hepatic tissues of streptozotocin-induced diabetic rats. Evid. Based Complement. Alternat. Med. 2012:409047. doi: 10.1155/2012/409047

30.     Bharti, S., Golechha, M., Kumari, S., Siddiqui, K. M., and Arya, D. S. (2012). Akt/GSK-3beta/eNOS phosphorylation arbitrates safranal-induced myocardial protection against ischemia-reperfusion injury in rats. Eur. J. Nutr. 51, 719–727. doi: 10.1007/s00394-011-0251-y

31.     Devi, R. C., Sim, S. M., and Ismail, R. (2012). Eect of cymbopogon citratus and citral on vascular smooth muscle of the isolated thoracic rat aorta. Evid. Based Complement. Alternat. Med. 2012:539475. doi: 10.1155/2012/539475

32.     Ajay, M., Chai, H. J., Mustafa, A. M., Gilani, A. H., and Mustafa, M. R. (2007). Mechanisms of the anti-hypertensive eect of Hibiscus sabdaria L. calyces. J. Ethnopharmacol. 109, 388–393. doi: 10.1016/j.jep.2006.08.005

33.     Niazmand, S., Fereidouni, E., Mahmoudabady, M., and Mousavi, S. M. (2014). Endothelium-independent vasorelaxant eects of hydroalcoholic extract from Nigella sativa seed in rat aorta: the roles of Ca2+ and K+ channels. Biomed Res. Int. 2014:247054. doi: 10.1155/2014/247054

34.     Lam, F. F., Yeung, J. H., Chan, K. M., and Or, P. M. (2008). Dihydrotanshinone, a lipophilic component of Salvia miltiorrhiza (danshen), relaxes rat coronary artery by inhibition of calcium channels. J. Ethnopharmacol. 119, 318–321. doi: 10.1016/j.jep.2008.07.011

35.     Padiya, R., Chowdhury, D., Borkar, R., Srinivas, R., Pal Bhadra, M., and Banerjee, S. K. (2014). Garlic attenuates cardiac oxidative stress via activation of PI3K/AKT/Nrf2-Keap1 pathway in fructose-fed diabetic rat. PLoS ONE 9:e94228. doi: 10.1371/journal.pone.0094228

36.     Hong, M. H., Kim, M. H., Chang, H. J., Kim, N. H., Shin, B. A., Ahn, B. W., et al. (2007). (-)-Epigallocatechin-3-gallate inhibits monocyte chemotactic protein-1 expression in endothelial cells via blocking NF-kappaB signaling. Life Sci. 80, 1957–1965. doi: 10.1016/j.lfs.2007.02.024

37.     Wan, X., Chen, X., Liu, L., Zhao, Y., Huang, W. J., Zhang, Q., et al. (2013). Berberine ameliorates chronic kidney injury caused by atherosclerotic

renovascular disease through the suppression of NFkappaB signaling pathway in rats. PLoS ONE 8:e59794. doi: 10.1371/journal.pone.0059794

38.     Ma, L., Liu, H., Xie, Z., Yang, S., Xu, W., Hou, J., et al. (2014). Ginsenoside Rb3 protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of JNK-mediated NF-kappaB pathway: a mouse cardiomyocyte model. PLoS ONE 9:e103628. doi: 10.1371/journal.pone.0103628

39.     Cho, Y. H., Ku, C. R., Hong, Z. Y., Heo, J. H., Kim, E. H., Choi, D. H., et al. (2013). Therapeutic eects of water soluble danshen extracts on atherosclerosis. Evidence Based Complement. Alternat. Med. 2013:623639. doi: 10.1155/2013/623639

40.     Kim, B. R., Seo, H. S., Ku, J. M., Kim, G. J., Jeon, C. Y., Park, J. H., et al. (2013). Silibinin inhibits the production of pro-inflammatory cytokines through inhibition of NF-kappaB signaling pathway in HMC-1 human mast cells. Inflamm. Res. 62, 941–950. doi: 10.1007/s00011-013-0640-1

41.     Kiemer, A. K., Hartung, T., Huber, C., and Vollmar, A. M. (2003). Phyllanthus amarus has anti-inflammatory potential by inhibition of iNOS, COX-2, and cytokines via the NF-kappaB pathway. J. Hepatol. 38, 289–297. doi: 10.1016/S0168-8278(02)00417-8

42.     Joshi, C. N., Martin, D. N., Shaver, P., Madamanchi, C., Muller-Borer, B. J., and Tulis, D. A. (2012). Control of vascular smooth muscle cell growth by connexin 43. Front. Physiol. 3:220. doi: 10.3389/fphys.2012.00220

43.     Tao, L. L., and Lei, Y. (2012). [Eects of extracts from Panax ginseng, Panax notoginseng and Ligusticum chuanxiong on expression of beta-galactosidase and signal pathway p16-cyclin D/CDK-Rb in vascular smooth muscle cells]. Zhong Xi Yi Jie He Xue Bao 10, 76–84. doi: 10.3736/jcim20120112

44.     Herrera-Arellano, A., Miranda-Sanchez, J., Avila-Castro, P., Herrera-Alvarez, S., Jimenez-Ferrer, J. E., Zamilpa, A., et al. (2007). Clinical eects produced by a standardized herbal medicinal product of Hibiscus sabdaria on patients with hypertension. A randomized, double-blind, lisinopril-controlled clinical trial. Planta Med. 73, 6–12. doi: 10.1055/s-2006-957065

45.     Zaoui, A., Cherrah, Y., Lacaille-Dubois, M. A., Settaf, A., Amarouch, H., and Hassar, M. (2000). [Diuretic and hypotensive eects of Nigella sativa in the spontaneously hypertensive rat]. Therapie 55, 379–382.

46.     Gilani, A. H., Jabeen, Q., Khan, A. U., and Shah, A. J. (2008). Gut modulatory, blood  pressure  lowering,  diuretic  and  sedative  activities  of  cardamom. J. Ethnopharmacol. 115, 463–472. doi: 10.1016/j.jep.2007.10.015

47.     Ogawa, H., Sasai, N., Kamisako, T., and Baba, K. (2007). Eects of osthol on blood pressure and lipid metabolism in stroke-prone spontaneously hypertensive rats. J. Ethnopharmacol. 112, 26–31. doi: 10.1016/j.jep.2007.01.028

48.     Jadhav, N., Patil, C. R., Chaudhari, K. B., Wagh, J. P., Surana, S. J., and Jadhav, R. B. (2010). Diuretic and natriuretic activity of two mistletoe species in rats Pharmacognosy Res. 2, 50–57. doi: 10.4103/0974-8490.60576

49.     Ried, K., Frank, O. R., and Stocks, N. P. (2010). Aged garlic extract lowers blood pressure in patients with treated but uncontrolled hypertension: a randomised controlled trial. Maturitas 67, 144–150. doi: 10.1016/j.maturitas.2010.06.001

50.     Ashraf, R., Khan, R. A., Ashraf, I., and Qureshi, A. A. (2013). Eects of Allium sativum (garlic) on systolic and diastolic blood pressure in patients with essential hypertension. Pak. J. Pharm. Sci. 26, 859–863.

51.     Hodgson, J. M., Puddey, I. B., Woodman, R. J., Mulder, T. P., Fuchs, D., Scott, K., et al. (2012). Eects of black tea on blood pressure: a randomized controlled trial. Arch. Intern. Med. 172, 186–188. doi: 10.1001/archinte.172.2.186

52.     McKay, D. L., Chen, C. Y., Saltzman, E., and Blumberg, J. B. (2010). Hibiscus sabdaria L. tea (tisane) lowers blood pressure in prehypertensive and mildly hypertensive adults. J. Nutr. 140, 298–303. doi: 10.3945/jn.109.115097

53.     Jovanovski, E., Bateman, E. A., Bhardwaj, J., Fairgrieve, C., Mucalo, I., Jenkins, A. L., et al. (2014). Eect of Rg3-enriched Korean red ginseng (Panax ginseng) on arterial stiness and blood pressure in healthy individuals: a randomized controlled trial. J. Am. Soc. Hypertens. 8, 537–541. doi: 10.1016/j.jash.2014.04.004.

 

 

 

 

 

Received on 28.03.2018        Modified on 29.05.2018

Accepted on 12.07.2018       ©A&V Publications All right reserved

Res.  J. Pharmacology and Pharmacodynamics.2018; 10(3):125-133.

DOI: 10.5958/2321-5836.2018.00024.1