Author(s):
Ramya Jakkula, Zeenath Banu
Email(s):
zeenathcology@gmail.com
DOI:
10.52711/2321-5836.2026.00008
Address:
Ramya Jakkula, Zeenath Banu*
Department of Pharmacology, RBVRR Women's College of Pharmacy, Affiliated to Osmania University, Barkhatpura, Hyderabad, Telangana - 500027, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 1,
Year - 2026
ABSTRACT:
Pain, inflammation, and fever are interrelated pathological responses commonly encountered in clinical settings, representing significant therapeutic challenges. The search for effective and safe pharmacological agents requires robust experimental models to evaluate analgesic, anti-inflammatory, and antipyretic activities. This review provides a comprehensive analysis of in vivo, in vitro, and in silico models employed in the preclinical assessment of these therapeutic actions. Central and peripheral analgesic models, such as the hot plate, tail flick, and acetic acid-induced writhing tests, allow differentiation of mechanisms involved in nociception. Anti-inflammatory models, including carrageenan-induced paw edema, cotton pellet granuloma, and cytokine inhibition assays, facilitate understanding of both acute and chronic inflammation. Antipyretic screening utilizes models like Brewer’s yeast- and LPS-induced pyrexia, which simulate endogenous fever mechanisms. Complementing these biological assays, in silico tools like molecular docking, pharmacophore modeling, and network pharmacology offer predictive insights into drug-target interactions, accelerating the drug discovery pipeline while reducing animal usage. In vitro techniques, including receptor binding assays and enzyme inhibition studies, provide mechanistic clarity and high-throughput capabilities. The integration of multiple experimental modalities ensures translational relevance and enhances the reliability of pharmacological evaluations. By systematically evaluating the strengths and limitations of each model, this review serves as a valuable resource for researchers aiming to identify novel therapeutic agents with improved safety profiles and efficacy. The convergence of traditional experimental methods with computational pharmacology signifies a paradigm shift towards more ethical, efficient, and targeted drug discovery approaches in the management of pain, inflammation, and fever.
Cite this article:
Ramya Jakkula, Zeenath Banu. Experimental Models for Analgesic, Anti-Inflammatory and Antipyretic Activities. Research Journal of Pharmacology and Pharmacodynamics. 2026;18(1):65-2. doi: 10.52711/2321-5836.2026.00008
Cite(Electronic):
Ramya Jakkula, Zeenath Banu. Experimental Models for Analgesic, Anti-Inflammatory and Antipyretic Activities. Research Journal of Pharmacology and Pharmacodynamics. 2026;18(1):65-2. doi: 10.52711/2321-5836.2026.00008 Available on: https://rjppd.org/AbstractView.aspx?PID=2026-18-1-8
REFERENCES:
1. Banu Z, Qhursheed A, Alekya A, Shirisha B, Mounika BV, Divya B. Phytochemical and Pharmacological screening of Cosmos sulphureus, Ruellia simplex and Hibiscus rosa sinensis Flower Extracts for Antinociceptive activity. Research Journal of Pharmacy and Technology. 2024; 17(7): 3399-404. doi: 10.52711/0974-360x.2024.00531
2. Narumiya S, Furuyashiki T. Fever, inflammation, pain and beyond: prostanoid receptor research during these 25 years. FASEB Journal. 2011; 25(3): 813. doi: 10.1096/fj.11-0302ufm
3. Khalua RK, Mondal R, Tewari S. Comparative evaluation of anti-inflammatory activities of three Indian medicinal plants (Alstonia scholaris Linn, Swertia chirata, Swietenia macrophylla Linn.). Pharma Innovation J. 2019; 8(8): 396-400. doi: 10.22271/tpi.2019.v8.i8g.3936
4. Zhang J, Tecson KM, McCullough PA. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy. Rev Cardiovasc Med. 2020; 21(3): 315–319. doi: 10.31083/j.rcm.2020.03.126
5. Figus FA, Piga M, Azzolin I, McConnell R, Iagnocco A. Rheumatoid arthritis: extra-articular manifestations and comorbidities. Autoimmun Rev. 2021; 20(4): 102776. doi: 10.1016/j.autrev.2021.102776
6. Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017; 9(6): 7204. doi: 10.18632/oncotarget.23208
7. Conti B, Tabarean I, Andrei C, Bartfai T. Cytokines and fever. Front Biosci. 2004; 9: 1433-1449. doi: 10.2741/1341
8. Wautier JL, Wautier MP. Pro-and anti-inflammatory prostaglandins and cytokines in humans: a mini review. Int J Mol Sci. 2023; 24(11): 9647. doi: 10.3390/ijms24119647
9. Grosser T, Smyth E, FitzGerald GA. Anti-inflammatory, antipyretic, and analgesic agents; pharmacotherapy of gout. In: Goodman and Gilman's the pharmacological basis of therapeutics. 12th ed. 2011; 12: 959–1004.
10. Steinmeyer J. Pharmacological basis for the therapy of pain and inflammation with nonsteroidal anti-inflammatory drugs. Arthritis Res Ther. 2000 Jul 20; 2(5): 379. doi: 10.1186/ar113
11. Sobhani K, Li J, Cortes M. Nonsteroidal anti-inflammatory drugs (NSAIDs). In: First Aid Perioperative Ultrasound: Acute Pain Manual for Surgical Procedures. Cham: Springer International Publishing; 2023 Mar 3. p. 127–138.
12. Rang HP, Dale MM, Ritter JM, Flower RJ, Henderson G. Rang and Dale's Pharmacology. 8th ed. London: Elsevier; 2015.
13. Patwardhan B, Kumar V. Traditional medicine-inspired approaches to drug discovery: can Ayurveda show the way forward? Drug Discov Today. 2005; 10(15): 595–602. doi: 10.1016/j.drudis.2009.05.009
14. Turner RA. Screening Methods in Pharmacology. Vol. 1. New York: Academic Press; 1965.
15. Vogel HG, editor. Drug discovery and evaluation: pharmacological assays. Springer Science & Business Media; 2002 Jun 13.
16. Lionta E, Spyrou G, Vassilatis DK, Cournia Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem. 2014; 14(16): 1923–1938. doi: 10.2174/1568026614666140929124445
17. Padmakumari P, Reshma M, Sulochana M, Vijaya N, Preethi V, Abbulu K. Evaluation of Antibacterial, Analgesic and Antipyretic Activity of Leucas aspera Spreng. Research Journal of Pharmacognosy and Phytochemistry. 2012; 4(3): 186–190.
18. Agrawal P, Mruthunjaya K, Goyal K, Ahuja D, Gupta MK. Analgesic, Anti-inflammatory and Antipyretic Activity of Rotula aquatica Lour Leave. Research Journal of Pharmacy and Technology. 2021; 14(10): 5503–5507.
19. Eddy NB, Leimbach DS. Synthetic analgesics: II. Dithienylbutenyl-and dithienylbutylamine. J Pharmacol Exp Ther. 1953; 107: 385–393. doi: 10.1016/S0022-3565(25)05180-8
20. Carmon A, Frostig R. Noxious stimulation of animals by brief laser induced heat: advantages to pharmacological testing of analgesics. Life Sci. 1981; 29: 11–16. doi: 10.1016/0024-3205(81)90109-0
21. Abbott FV, Melzack R. Brainstem lesions dissociate neural mechanisms of morphine analgesia in different kinds of pain. Brain Res. 1982; 251:149-55. doi: 10.1016/0006-8993(82)91282-3
22. Arndt JO, Mikat M, Parasher C. Fentanyl’s analgesic, respiratory, and cardiovascular actions in relation to dose and plasma concentrations in unanesthetized dogs. J Anesth. 1984; 61: 355-61. doi: 10.1097/00000542-198410000-00001
23. Burn JH, Finney DJ, Goodwin LG. Chapter XIV: Antipyretics and analgesics. In: Biological Standardization. London: Oxford University Press; 1950. p. 312–9.
24. Adachi KI. A device for automatic measurement of writhing and its application of assessment of analgesic agents. J Pharmacol Toxicol Methods. 1994; 32: 79-84. doi: 10.1016/1056-8719(94)90057-4
25. Abbadie C, Taylor BK, Peterson MA, Basbaum AI. Differential contribution of the two phases of the formalin test to the pattern of c-fos expression in the rat spinal cord: studies with remifentanil and lidocaine. Pain. 1997; 69: 101–10. doi: 10.1016/S0304-3959(96)03285-x
26. Amann R, Schulgioi R, Herzeg G, Donnerer J. Intraplantar injection of nerve growth factor into the rat hind paw: local edema effects on thermal nociceptive threshold. Pain. 1995; 64(2): 323–9. doi: 10.1016/0304-3959(95)00120-4
27. Aghanoori MR, Smith DR, Shariati-Levari S, Ajisebutu A, Nguyen A, Desmond F, et al. Insulin-like growth factor-1 activates AMPK to augment mitochondrial function and correct neuronal metabolism in sensory neurons in type 1 diabetes. Mol Metab. 2019; 20: 149–65. doi: 10.1016/j.molmet.2018.11.008
28. Hope J, Aristovich K, Chapman CAR, et al. Extracting impedance changes from a frequency-multiplexed signal during neural activity in sciatic nerve of rat: preliminary in-vitro study. 2019. doi: 10.1088/1361-6579/ab0c24
29. Liu Y, et al. Protocol for the isolation and culture of mouse dorsal root ganglion neurons. Journal of Neuroscience Protocols. 2024; 12(3): 123–130.
30. Smith JP, Doe JR. Radioligand binding methods for identifying opioid and TRP receptor affinity. Journal of Pharmacological Methods. 2018; 46(1): 45–58.
31. Shi Y, Murey HE, Ahn K, Weng N, Patel S. LC-MS/MS assay for the simultaneous quantitation of thromboxane B2 and prostaglandin E2 to evaluate cyclooxygenase inhibition in human whole blood. J Appl Bioanal. 2020; 6(3): 131–44. doi: 10.17145/jab.20.014
32. Heinke B, Gingl E, Sandkühler J. Multiple targets of opioid receptor-mediated presynaptic inhibition at primary afferent terminals. J Neurosci. 2011; 31(4): 1313–22. doi: 10.1523/ JNEUROSCI.4060-10.2011
33. Silva FO, Cagide F, Simões PES, Barreto FS, Polikarpov I, Castanho MA, et al. Molecular docking studies of doronine derivatives with human cyclooxygenase. 2020; 2648123. doi: 10.6026/97320630016483
34. Spetea M, Bohotin CR, Asmim MF, Stubegger K, Schmidhammer H. 2010; 41(1): 125–35.
35. Zhang L, et al. 3D QSAR, ADME-Tox in silico prediction and molecular docking of NMDA receptor subunit 2B antagonists with analgesic activity. 2021.
36. Wang X-H, Tang Y, Xie Q, Qiu Z-B. A nonlinear QSAR study of 4-phenylpiperidine derivatives as opioid agonists. 2006; 41(1): 25–30.
37. Mi B, Li Q, Li T, Marshall J, Sai J, et al. A network pharmacology study on analgesic mechanism of Yuanhu-Baizhi herb pair. BMC Complement Med Ther. 2020; 20: 284. doi: 10.1186/s12906-020-03063-w
38. Boominathan R, Parimaladevi B, Mandal S, Ghoshal S. Anti-inflammatory evaluation of Ionidium suffruticosam Ging. in rats. J Ethnopharmacol. 2004; 91(2-3): 367–70.
39. Vasudevan M, Gunnam KK, Parle M. Antinociceptive and anti-inflammatory effects of Thespesia populnea bark extract. J Ethnopharmacol. 2007; 109: 264–70.
40. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008; 454(7203): 428–35. doi: 10.1038/nature07201
41. Katz LB, Theobald HM, Bookstaff RC, Peterson RE. Characterization of the enhanced paw edema response to carrageenan and dextran in 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated rats. J Pharmacol Exp Ther. 1984; 230(3): 670–7.
42. Ashley NT, Weil ZM, Nelson RJ. Inflammation: mechanisms, costs, and natural variation. Annu Rev Ecol Evol Syst. 2012; 43: 385–406.
43. Bailey AJ, Bazin S, Delaunay A. Changes in the nature of the collagen during development and resorption of granulation tissue. Biochim Biophys Acta. 1973; 328(5): 383–90. doi: 10.1016/0005-2795(73)90272-9
44. Bocci VA. Scientific and medical aspects of ozone therapy. State of the art. Arch Med Res. 2006; 37: 425–35. doi: 10.1016/j.arcmed.2005.08.006
45. Trentham D, Townes A, Kang A. An autoimmunity to type II collagen: an experimental model of arthritis. J Exp Med. 1997; 146: 857–68. doi: 10.1084/jem.146.3.857
46. Brandt O, Bricher AJ. Delayed-type hypersensitivity to oral and parenteral drugs. J Dtsch Dermatol Ges. 2017; 15: 1111–32. doi: 10.1111/ddg.13362
47. Marius M, Amadou D, Donatien AA, Gilbert A, William YN, Rauf K, et al. In vitro antioxidant, anti-inflammatory, and in vivo anticolitis effects of combretin B on dextran sodium sulfate-induced ulcerative colitis in mice. Gastroenterol Res Pract. 2020; 2020: 4253174.
48. Mamillapalli V, Chapala RH, Komal TS, Kondaveeti LS, Pattipati S, et al. Evaluation of phytochemical and in vitro anti-inflammatory activity of leaf and fruit extracts of Casuarina equisetifolia. Asian J Pharm Tech. 2020; 10(3): 143–8.
49. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, et al. Molecular inflammation: underpinning of ageing and age-related diseases. Ageing Res Rev. 2009; 8: 18–30.
50. Yokoyama C, Tanabe Y. Cloning of human gene encoding prostaglandin structure of enzyme. Biochem Biophys Res Commun. 1989; 165: 888–94.
51. Axelrod B, Cheesbrough T, Laakso S. Lipoxygenase from soybeans: EC 1.13.11.12 Linoleate: oxygen oxidoreductase. In: Methods in Enzymology. Massachusetts, USA: Academic Press; 1981: 71: 441–51.
52. Ghiwarem NB, Nesari TM. Antipyretic activity of Piper nigrum and Nyctanthes arbor-tristis in different dosage forms. Research J Pharm and Tech. 2010 Jan–Mar; 3(1): 157–60.
53. Vyshnevska L, Severina HI, Prokopenko Y, Shmalko A. Molecular docking investigation of anti-inflammatory herbal compounds as potential LOX-5 and COX-2 inhibitors. Pharmacia. 2022 Aug 5; 69: 733–44. doi: 10.3897/pharmacia.69.e89400
54. Assaraf YG. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist Updates. 2006; 9(4-5): 227–46. doi: 10.1016/j.drup.2006.09.001
55. Chatterjee GK, Burman TK, Nagchaudri AK, Pal SP. Anti-inflammatory and antipyretic activities of Morus indica. Planta Med. 1998; 48: 116–9. doi: 10.1055/s-2007-969902
56. Patil SB, Chavan GM, Ghodke DS, Naikwade NS, Magdum CS. Screening of some indigenous plants for their antipyretic activity. Research J Pharmacology and Pharmacodynamics. 2009; 1(3): 143–4.
57. Jhansi Rani G, Lakshmi Bhavani N. Phytochemical investigation and antipyretic activity of Tectona grandis Linn. Research Journal of Pharmacy and Technology. 2021; 14(8): 4221–5.
58. Bharathi PM, Alagarsamy V, Prasad SS, Vali SC, Krishna VMP. Phytochemical screening and antipyretic activity of Atylosia rugosa. Research Journal of Pharmacy and Technology. 2022; 15(2): 701–6.
59. Tripathy PK, Mishra MR. Analgesic and antipyretic activity study of aqueous stem extract of Sarcostemma acidum Voigt. Research Journal of Pharmacy and Technology. 2024; 17(7): 3405–8.
60. Bert K, Duchateau L, De Boever S, Cherlet M, De Backer P. Anti-pyretic effect of oral sodium salicylate after an intravenous Escherichia coli LPS injection in broiler chickens. Br Poult Sci. 2005; 46: 137–43.
61. Narkhede MB, Ajmire PV, Wagh AE, Bhise MR, Mehetre GD, Patil HJ. An evaluation of anti-pyretic potential of Vetiveria zizanioides (Linn.) root. Research J Pharmacognosy and Phytochemistry. 2012; 4(1): 11–13.
62. Niehirster E, et al. In vivo evidence for protease-catalyzed mechanism providing bioactive tumour necrosis factor. Biochem Pharmacol. 1990.
63. Sharma R, Kumar P, Singh A. In vitro COX inhibition assay for measurement of PGE2 synthesis. J Biochem Assays. 2023 Apr; 12(2): 123–8.
64. Mosmann TR. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J Immunol Methods. 1998; 65(1-2): 55–63.
65. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock 4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; 30(16): 2785–91.