Author(s): Madhuranthagan. M, Benito Johnson. D, Essly Selva Jasmine. P, Suresh. R, Senthil Kumar. C

Email(s): benitojohnson@rvsgroup.com

DOI: 10.52711/2321-5836.2026.00005   

Address: Madhuranthagan. M, Benito Johnson. D*, Essly Selva Jasmine. P, Suresh. R, Senthil Kumar. C
1Department of Pharmacology, RVS College of Pharmaceutical Sciences, Coimbatore, Tamil Nadu, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 1,     Year - 2026


ABSTRACT:
“Parkinson’s disease” is a long-term, progressively advancing neurological condition marked by motor dysfunction, mainly due to the deterioration of dopamine-secreting “neurons in the substantia nigra pars compacta”. The pathophysiology of is characterized by a marked reduction of dopamine concentration within the basal nuclei, leading to classic movement-related symptoms such as slowness of movement, quivering, firmness, and loss of balance. At the cellular level, PD is associated with the conglomeration of mis organize a-synuclein polypeptides, forming Lewy bodies, which are considered a tell-tale sign of the illness. Mitochondrial dysfunction, oxidative stress, impaired protein degradation systems (namely Proteolytic pathway driven by ubiquitin labeling and proteasomal cleavage), and neuroinflammation contribute to neuronal damage. Genetic alterations in genes like SNCA, LRRK2, PARK2, and PINK1 significantly contribute to Lineage-associated and isolated occurrences of the disease. Understanding the complex pathophysiology of Insights into PD are fundamental for the development of disease-modifying therapies with the objective of halting or reversing neurodegeneration beyond symptomatic management. Emerging research has identified novel biomarkers for early detection, including volatile compounds in earwax, RNA signatures in blood, and motor patterns captured via smart devices. These developments hold promise for pre-symptomatic diagnosis and personalized monitoring. In parallel, studies suggest a possible viral trigger—human pegivirus (HPgV)—that may act synergistically with genetic mutations (e.g., LRRK2), redefining disease etiology. Therapeutic innovations include disease-modifying strategies such as targeted gene therapy (e.g., AAV2-GDNF), patient-derived stem cell transplantation, and misfolded protein correction (SOD1-related pathways). Additionally, symptomatic relief through neuromodulation, dopamine receptor agonists, and psychedelic-assisted therapy (e.g., psilocybin) offer improved quality of life for patients. Collectively, these multi-disciplinary advances—spanning virology, genetics, neurotechnology, and pharmacology—are converging toward a transformative approach for managing and potentially overcoming “Parkinson’s disease”. Ongoing clinical trials and integrative diagnostic systems will be critical in translating these findings into routine care.


Cite this article:
Madhuranthagan. M, Benito Johnson. D, Essly Selva Jasmine. P, Suresh. R, Senthil Kumar. C. Cellular and Molecular Mechanisms Contributing to Parkinson’s Disease. Research Journal of Pharmacology and Pharmacodynamics. 2026;18(1):35-5. doi: 10.52711/2321-5836.2026.00005

Cite(Electronic):
Madhuranthagan. M, Benito Johnson. D, Essly Selva Jasmine. P, Suresh. R, Senthil Kumar. C. Cellular and Molecular Mechanisms Contributing to Parkinson’s Disease. Research Journal of Pharmacology and Pharmacodynamics. 2026;18(1):35-5. doi: 10.52711/2321-5836.2026.00005   Available on: https://rjppd.org/AbstractView.aspx?PID=2026-18-1-5


REFERENCES:
1.    Twelves D, Perkins KS, Counsell C. Systematic review of incidence studies of Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society. 2003 Jan; 18(1): 19-31.
2.    Parkinson J. An essay on the Shaking Palsy. Archives of Neurology. 1969 Apr 1; 20(4):441-5.
3.    Savica R, Grossardt BR, Bower JH, Ahlskog JE, Rocca WA. Incidence and pathology of synucleinopathies and tauopathies related to parkinsonism. JAMA Neurology. 2013 Jul;70(7).
4.    Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L. Pathological roles of α-synuclein in neurological disorders. The Lancet Neurology. 2011 Nov 1; 10(11): 1015-25.
5.    Maries E, Dass B, Collier TJ, Kordower JH, Steece-Collier K. The role of α-synuclein in Parkinson's disease: insights from animal models. Nature Reviews Neuroscience. 2003 Sep 1; 4(9): 727-38.
6.    Wales P, Pinho R, Lázaro DF, Outeiro TF. Limelight on alpha-synuclein: pathological and mechanistic implications in neurodegeneration. Journal of Parkinson’s disease. 2013 Nov 1;3(4):415-59.
7.    Das D. Computational Investigation of Membrane induced self-assembly and aggregation of α-Synuclein (Doctoral dissertation, Tezpur University).
8.    Ruipérez V, Darios F, Davletov B. Alpha-synuclein, lipids and Parkinson’s disease. Progress in Lipid Research. 2010 Oct 1;49(4):420-8.
9.    Kim C, Lee SJ. Controlling the mass action of α‐synuclein in Parkinson’s disease. Journal of Neurochemistry. 2008 Oct;107(2):303-16.
10.    Melki R. Role of different alpha-synuclein strains in synucleinopathies, similarities with other neurodegenerative diseases. Journal of Parkinson’s Disease. 2015 Jun 1;5(2):217-27.
11.    Kaushik S, Cuervo AM. Proteostasis and aging. Nature Medicine. 2015 Dec;21(12):1406-15.
12.    Xilouri M, Brekk OR, Stefanis L. Alpha-synuclein and protein degradation systems: a reciprocal relationship. Molecular Neurobiology. 2013 Apr; 47(2): 537-51.
13.    Brieger K, Schiavone S, Miller Jr FJ, Krause KH. Reactive oxygen species: from health to disease. Swiss Medical Weekly. 2012 Aug 12;142(3334):w13659-.
14.    Lee DH, Gold R, Linker RA. Mechanisms of oxidative damage in multiple sclerosis and neurodegenerative diseases: therapeutic modulation via fumaric acid esters. International Journal of Molecular Sciences. 2012 Sep 18; 13(9): 11783-803.
15.    Shukla V, Mishra SK, Pant HC. Oxidative stress in neurodegeneration. Advances in Pharmacological and Pharmaceutical Sciences. 2011; 2011(1): 572634.
16.    Kemppainen S, Lindholm P, Galli E, Lahtinen HM, Koivisto H, Hämäläinen E, Saarma M, Tanila H. Cerebral dopamine neurotrophic factor improves long-term memory in APP/PS1 transgenic mice modeling Alzheimer's disease as well as in wild-type mice. Behavioural Brain Research. 2015 Sep 15; 291: 1-1.
17.    Melief EJ, Cudaback E, Jorstad NL, Sherfield E, Postupna N, Wilson A, Darvas M, Montine KS, Keene CD, Montine TJ. Partial depletion of striatal dopamine enhances penetrance of cognitive deficits in a transgenic mouse model of A lzheimer's disease. Journal of Neuroscience Research. 2015 Sep; 93(9): 1413-22.
18.    Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological Reviews. 2007 Jan; 87(1): 245-313.
19.    Halliwell B. Oxidative stress and neurodegeneration: where are we now?. Journal of Neurochemistry. 2006 Jun; 97(6): 1634-58.
20.    Kovac S, Angelova PR, Holmström KM, Zhang Y, Dinkova-Kostova AT, Abramov AY. Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochimica et Biophysica Acta (BBA)-General Subjects. 2015 Apr 1; 1850(4):794-801.
21.    Dorszewska J, Kowalska M, Prendecki M, Piekut T, Kozłowska J, Kozubski W. Oxidative stress factors in Parkinson’s disease. Neural Regeneration Research. 2021 Jul 1; 16(7): 1383-91.
22.    Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Annals of the New York Academy of Sciences. 2008 Dec; 1147(1): 37-52.
23.    Dionísio PA, Amaral JD, Rodrigues CM. Oxidative stress and regulated cell death in Parkinson’s disease. Ageing research reviews. 2021 May 1; 67: 101263.
24.    Guiney SJ, Adlard PA, Bush AI, Finkelstein DI, Ayton S. Ferroptosis and cell death mechanisms in Parkinson's disease. Neurochemistry International. 2017 Mar 1; 104: 34-48.
25.    Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, Kapralov AA. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology. 2017 Jan;13(1):81-90.
26.    Dehay B, Bové J, Rodríguez-Muela N, Perier C, Recasens A, Boya P, Vila M. Pathogenic lysosomal depletion in Parkinson's disease. Journal of Neuroscience. 2010 Sep 15;30(37):12535-44.
27.    Hernandes MS, Café-Mendes CC, Britto LR. NADPH oxidase and the degeneration of dopaminergic neurons in parkinsonian mice. Oxidative Medicine and Cellular Longevity. 2013; 2013(1): 157857.
28.    Dryanovski DI, Guzman JN, Xie Z, Galteri DJ, Volpicelli-Daley LA, Lee VM, Miller RJ, Schumacker PT, Surmeier DJ. Calcium entry and α-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. Journal of Neuroscience. 2013 Jun 12; 33(24): 10154-64.
29.    Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012 May 25; 149(5):1060-72.
30.    Do Van B, Gouel F, Jonneaux A, Timmerman K, Gelé P, Pétrault M, Bastide M, Laloux C, Moreau C, Bordet R, Devos D. Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC. Neurobiology of Disease. 2016 Oct 1; 94: 169-78.
31.    Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature Cell Biology. 2014 Dec; 16(12): 1180-91.
32.    Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K, Rosenberg PA, Lo DC, Weinberg JM, Linkermann A, Stockwell BR. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. Journal of the American Chemical Society. 2014 Mar 26; 136(12):4551-6.
33.    Cao JI, Chen X, Jiang LI, Lu B, Yuan M, Zhu D, Zhu H, He Q, Yang B, Ying M. DJ-1 suppresses ferroptosis through preserving the activity of S-adenosyl homocysteine hydrolase. Nature Communications. 2020 Mar 6; 11(1): 1251.
34.    Forcina GC, Dixon SJ. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics. 2019 Sep; 19(18): 1800311.
35.    Cozza G, Rossetto M, Bosello-Travain V, Maiorino M, Roveri A, Toppo S, Zaccarin M, Zennaro L, Ursini F. Glutathione peroxidase 4-catalyzed reduction of lipid hydroperoxides in membranes: The polar head of membrane phospholipids binds the enzyme and addresses the fatty acid hydroperoxide group toward the redox center. Free Radical Biology and Medicine. 2017 Nov 1; 112: 1-1.
36.    Castellani RJ, Siedlak SL, Perry G, Smith MA. Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathologica. 2000 Jul; 100(2): 111-4.
37.    Golts N, Snyder H, Frasier M, Theisler C, Choi P, Wolozin B. Magnesium inhibits spontaneous and iron-induced aggregation of α-synuclein. Journal of Biological Chemistry. 2002 May 3;277(18):16116-23.
38.    Guo JJ, Yue F, Song DY, Bousset L, Liang X, Tang J, Yuan L, Li W, Melki R, Tang Y, Chan P. Intranasal administration of α-synuclein preformed fibrils triggers microglial iron deposition in the substantia nigra of Macaca fascicularis. Cell Death & Disease. 2021 Jan 13; 12(1): 81.
39.    Kenkhuis B, Somarakis A, de Haan L, Dzyubachyk O, IJsselsteijn ME, de Miranda NF, Lelieveldt BP, Dijkstra J, van Roon-Mom WM, Höllt T, van der Weerd L. Iron loading is a prominent feature of activated microglia in Alzheimer’s disease patients. Acta Neuropathologica Communications. 2021 Feb 17; 9(1): 27.
40.    Friedrich I, Reimann K, Jankuhn S, Kirilina E, Stieler J, Sonntag M, Meijer J, Weiskopf N, Reinert T, Arendt T, Morawski M. Cell specific quantitative iron mapping on brain slices by immuno-µPIXE in healthy elderly and Parkinson’s disease. Acta Neuropathologica Communications. 2021 Mar 22; 9(1): 47.
41.    Sharma N, Nehru B. Apocyanin, a microglial NADPH oxidase inhibitor prevents dopaminergic neuronal degeneration in lipopolysaccharide-induced Parkinson’s disease model. Molecular Neurobiology. 2016 Jul; 53(5): 3326-37.
42.    Kapralov AA, Yang Q, Dar HH, Tyurina YY, Anthonymuthu TS, Kim R, St. Croix CM, Mikulska-Ruminska K, Liu B, Shrivastava IH, Tyurin VA. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nature Chemical Biology. 2020 Mar; 16(3): 278-90.
43.    Xu H, Wang Y, Song N, Wang J, Jiang H, Xie J. New progress on the role of glia in iron metabolism and iron-induced degeneration of dopamine neurons in Parkinson’s disease. Frontiers in Molecular Neuroscience. 2018 Jan 19; 10: 455.
44.    Jeong SY, David S. Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. Journal of Biological Chemistry. 2003 Jul 18; 278(29): 27144-8.
45.    Ayton S, Lei P, Duce JA, Wong BX, Sedjahtera A, Adlard PA, Bush AI, Finkelstein DI. Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease. Annals of Neurology. 2013 Apr; 73(4): 554-9.
46.    Wang J, Bi M, Xie J. Ceruloplasmin is involved in the nigral iron accumulation of 6-OHDA-lesioned rats. Cellular and Molecular Neurobiology. 2015 Jul; 35(5): 661-8.
47.    Fernández-Mendívil C, Luengo E, Trigo-Alonso P, García-Magro N, Negredo P, López MG. Protective role of microglial HO-1 blockade in aging: Implication of iron metabolism. Redox Biology. 2021 Jan 1;38:101789.
48.    Song W, Cressatti M, Zukor H, Liberman A, Galindez C, Schipper HM. Parkinsonian features in aging GFAP. HMOX1 transgenic mice overexpressing human HO-1 in the astroglial compartment. Neurobiology of Aging. 2017 Oct 1; 58: 163-79.
49.    Wang ZL, Yuan L, Li W, Li JY. Ferroptosis in Parkinson’s disease: glia–neuron crosstalk. Trends in Molecular Medicine. 2022 Apr 1; 28(4): 258-69.
50.    Burns RS, LeWitt PA, Ebert MH, Pakkenberg H, Kopin IJ. The clinical syndrome of striatal dopamine deficiency: parkinsonism induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). New England Journal of Medicine. 1985 May 30; 312(22): 1418-21.
51.    Chaturvedi RK, Beal MF. Mitochondrial approaches for neuroprotection. Annals of the New York Academy of Sciences. 2008 Dec; 1147(1): 395-412.
52.    Panov A, Dikalov S, Shalbuyeva N, Taylor G, Sherer T, Greenamyre JT. Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. Journal of Biological Chemistry. 2005 Dec 23; 280(51): 42026-35.
53.    Borland MK, Trimmer PA, Rubinstein JD, Keeney PM, Mohanakumar KP, Liu L, Bennett Jr JP. Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson's disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Molecular Neurodegeneration. 2008 Dec 29; 3(1): 21.
54.    Raza C, Anjum R. Parkinson's disease: Mechanisms, translational models and management strategies. Life Sciences. 2019 Jun 1; 226: 77-90.
55.    Klivenyi P, Siwek D, Gardian G, Yang L, Starkov A, Cleren C, Ferrante RJ, Kowall NW, Abeliovich A, Beal MF. Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiology of Disease. 2006 Mar 1; 21(3): 541-8.
56.    Nussbaum RL, Polymeropoulos MH. Genetics of Parkinson's disease. Human Molecular Genetics. 1997 Sep 1; 6(10): 1687-91.
57.    Mudo G, Mäkelä J, Liberto VD, Tselykh TV, Olivieri M, Piepponen P, Eriksson O, Mälkiä A, Bonomo A, Kairisalo M, Aguirre JA. Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cellular and Molecular Life Sciences. 2012 Apr; 69(7): 1153-65.
58.    St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006 Oct 20; 127(2): 397-408.
59.    Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006 Oct 19; 443(7113): 787-95.
60.    Casarejos MJ, Menendez J, Solano RM, Rodriguez‐Navarro JA, Garcia de Yebenes J, Mena MA. Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. Journal of Neurochemistry. 2006 May; 97(4):934-46.
61.    Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. Journal of Biological Chemistry. 2004 Apr 30; 279(18):18614-22.
62.    Liu G, Zhang C, Yin J, Li X, Cheng F, Li Y, Yang H, Uéda K, Chan P, Yu S. α-Synuclein is differentially expressed in mitochondria from different rat brain regions and dose-dependently down-regulates complex I activity. Neuroscience Letters. 2009 May 1;454(3):187-92.
63.    Bertolin G, Ferrando-Miguel R, Jacoupy M, Traver S, Grenier K, Greene AW, Dauphin A, Waharte F, Bayot A, Salamero J, Lombès A. The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance. Autophagy. 2013 Nov 3; 9(11): 1801-17.
64.    Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. The Journal of Cell Biology. 2008 Dec 1; 183(5): 795-803.
65.    Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biology. 2010 Feb; 12(2):119-31.
66.    Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. Journal of Cell Biology. 2010 Apr 19; 189(2): 211-21.
67.    Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. Journal of Cell Biology. 2010 Apr 19; 189(2): 211-21.
68.    Vives-Bauza C, Zhou C, Huang Y, Cui M, De Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrané J. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proceedings of the National Academy of Sciences. 2010 Jan 5; 107(1): 378-83.
69.    Liu W, Wang M, Shen L, Zhu Y, Ma H, Liu B, Ouyang L, Guo W, Xu Q, Sun Y. SHP2-mediated mitophagy boosted by lovastatin in neuronal cells alleviates parkinsonism in mice. Signal Transduction and Targeted Therapy. 2021 Jan 29; 6(1):34.
70.    Lavara-Culebras E, Paricio N. Drosophila DJ-1 mutants are sensitive to oxidative stress and show reduced lifespan and motor deficits. Gene. 2007 Oct 1; 400(1-2):158-65.
71.    Irrcher I, Aleyasin H, Seifert EL, Hewitt SJ, Chhabra S, Phillips M, Lutz AK, Rousseaux MW, Bevilacqua L, Jahani-Asl A, Callaghan S. Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics. Human Molecular Genetics. 2010 Oct 1; 19(19):3734-46.
72.    Krebiehl G, Ruckerbauer S, Burbulla LF, Kieper N, Maurer B, Waak J, Wolburg H, Gizatullina Z, Gellerich FN, Woitalla D, Riess O. Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1. PloS One. 2010 Feb 23; 5(2): e9367.
73.    Saha S, Guillily MD, Ferree A, Lanceta J, Chan D, Ghosh J, Hsu CH, Segal L, Raghavan K, Matsumoto K, Hisamoto N. LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. Journal of Neuroscience. 2009 Jul 22; 29(29): 9210-8.
74.    Yue M, Hinkle KM, Davies P, Trushina E, Fiesel FC, Christenson TA, Schroeder AS, Zhang L, Bowles E, Behrouz B, Lincoln SJ. Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock-in mice. Neurobiology of Disease. 2015 Jun 1; 78: 172-95.
75.    Wang X, Yan MH, Fujioka H, Liu J, Wilson-Delfosse A, Chen SG, Perry G, Casadesus G, Zhu X. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Human Molecular Genetics. 2012 May 1; 21(9): 1931-44.
76.    Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T. Interleukin-1β, interleukin-6, epidermal growth factor and transforming growth factor-α are elevated in the brain from parkinsonian patients. Neuroscience Letters. 1994 Oct 24; 180(2): 147-50.
77.    Sommer A, Fadler T, Dorfmeister E, Hoffmann AC, Xiang W, Winner B, Prots I. Infiltrating T lymphocytes reduce myeloid phagocytosis activity in synucleinopathy model. Journal of Neuroinflammation. 2016 Jun 30; 13(1): 174.
78.    Brochard V, Combadière B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM, Duyckaerts C. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. The Journal of Clinical Investigation. 2008 Dec 22;119(1).
79.    Stone DK, Reynolds AD, Mosley RL, Gendelman HE. Innate and adaptive immunity for the pathobiology of Parkinson's disease. Antioxidants & Redox Signaling. 2009 Sep 1;11(9):2151-66.
80.    Kustrimovic N, Comi C, Magistrelli L, Rasini E, Legnaro M, Bombelli R, Aleksic I, Blandini F, Minafra B, Riboldazzi G, Sturchio A. Parkinson’s disease patients have a complex phenotypic and functional Th1 bias: cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naïve and drug-treated patients. Journal of Neuroinflammation. 2018 Jul 12; 15(1): 205.
81.    Panicker N, Sarkar S, Harischandra DS, Neal M, Kam TI, Jin H, Saminathan H, Langley M, Charli A, Samidurai M, Rokad D. Fyn kinase regulates misfolded α-synuclein uptake and NLRP3 inflammasome activation in microglia. Journal of Experimental Medicine. 2019 Jun 3; 216(6): 1411-30.
82.    Ferreira SA, Romero-Ramos M. Microglia response during Parkinson’s disease: alpha-synuclein intervention. Frontiers in Cellular Neuroscience. 2018 Aug 6; 12: 247.
83.    Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, Torizuka T. Microglial activation and dopamine terminal loss in early Parkinson's disease. Annals of Neurology. 2005 Feb; 57(2): 168-75.
84.    Ouchi Y, Yagi S, Yokokura M, Sakamoto M. Neuroinflammation in the living brain of Parkinson's disease. Parkinsonism and Related Disorders. 2009 Dec 1; 15: S200-4.
85.    Haque ME, Akther M, Jakaria M, Kim IS, Azam S, Choi DK. Targeting the microglial NLRP3 inflammasome and its role in Parkinson's disease. Movement Disorders. 2020 Jan; 35(1):20-33.
86.    Labzin LI, Heneka MT, Latz E. Innate immunity and neurodegeneration. Annual Review of Medicine. 2018 Jan 29;69:437-49.
87.    Earls RH, Menees KB, Chung J, Barber J, Gutekunst CA, Hazim MG, Lee JK. Intrastriatal injection of preformed alpha-synuclein fibrils alters central and peripheral immune cell profiles in non-transgenic mice. Journal of Neuroinflammation. 2019 Dec 3;16(1):250.
88.    Kuhbandner K, Hoffmann A, González Alvarado MN, Seyler L, Bäuerle T, Winkler J, Linker RA. alpha-Synuclein: a modulator during inflammatory CNS demyelination. Journal of Molecular Neuroscience. 2020 Jul;70(7):1038-49.
89.    Dinarello CA. Overview of the IL‐1 family in innate inflammation and acquired immunity. Immunological Reviews. 2018 Jan; 281(1): 8-27.
90.    McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA‐DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology. 1988 Aug;38(8):1285-.
91.    McGEER PL, McGEER EG. Inflammation and the degenerative diseases of aging. Annals of the New York Academy of Sciences. 2004 Dec; 1035(1):104-16.
92.    Ambrosi G, Kustrimovic N, Siani F, Rasini E, Cerri S, Ghezzi C, Dicorato G, Caputo S, Marino F, Cosentino M, Blandini F. Complex changes in the innate and adaptive immunity accompany progressive degeneration of the nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine in the rat. Neurotoxicity Research. 2017 Jul;32(1):71-81.
93.    Singh SS, Rai SN, Birla H, Zahra W, Rathore AS, Singh SP. NF-κB-mediated neuroinflammation in Parkinson’s disease and potential therapeutic effect of polyphenols. Neurotoxicity Research. 2020 Mar; 37(3): 491-507.
94.    Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Molecular Neurobiology. 2016 Mar;53(2):1181-94.
95.    Hunot S, Boissiere F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch EC. Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience. 1996 May 1; 72(2): 355-63.
96.    Noelker C, Morel L, Lescot T, Osterloh A, Alvarez-Fischer D, Breloer M, Henze C, Depboylu C, Skrzydelski D, Michel PP, Dodel RC. Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Scientific Reports. 2013 Mar 6; 3(1):1393.
97.    Sommer A, Marxreiter F, Krach F, Fadler T, Grosch J, Maroni M, Graef D, Eberhardt E, Riemenschneider MJ, Yeo GW, Kohl Z. Th17 lymphocytes induce neuronal cell death in a human iPSC-based model of Parkinson’s disease. Cell Stem Cell. 2019 Jun 6; 24(6): 1006.
98.    Galiano-Landeira J, Torra A, Vila M, Bové J. CD8 T cell nigral infiltration precedes synucleinopathy in early stages of Parkinson’s disease. Brain. 2020 Dec 1;143(12):3717-33.
99.    Karikari AA, McFleder RL, Ribechini E, Blum R, Bruttel V, Knorr S, Gehmeyr M, Volkmann J, Brotchie JM, Ahsan F, Haack B. Neurodegeneration by α-synuclein-specific T cells in AAV-A53T-α-synuclein Parkinson’s disease mice. Brain, Behavior, and Immunity. 2022 Mar 1; 101:194-210.
100.    Williams GP, Schonhoff AM, Jurkuvenaite A, Gallups NJ, Standaert DG, Harms AS. CD4 T cells mediate brain inflammation and neurodegeneration in a mouse model of Parkinson's disease. Brain. 2021 Jul 1; 144(7):2047-59.
101.    Heiss CN, Olofsson LE. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. Journal of Neuroendocrinology. 2019 May; 31(5): e12684.
102.    Schwiertz A, Spiegel J, Dillmann U, Grundmann D, Bürmann J, Faßbender K, Schäfer KH, Unger MM. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson's disease. Parkinsonism and Related Disorders. 2018 May 1;50:104-7.
103.    Patterson AM, Mulder IE, Travis AJ, Lan A, Cerf-Bensussan N, Gaboriau-Routhiau V, Garden K, Logan E, Delday MI, Coutts AG, Monnais E. Human gut symbiont Roseburia hominis promotes and regulates innate immunity. Frontiers in Immunology. 2017 Sep 26; 8:1166. 
104.    Sharma N, Nehru B. Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson’s disease model. Inflammopharmacology. 2018 Apr; 26(2): 349-60.
105.    Albani D, Polito L, Batelli S, De Mauro S, Fracasso C, Martelli G, Colombo L, Manzoni C, Salmona M, Caccia S, Negro A. The SIRT1 activator resveratrol protects SK‐N‐BE cells from oxidative stress and against toxicity caused by α‐synuclein or amyloid‐β (1‐42) peptide. Journal of Neurochemistry. 2009 Sep; 110(5): 1445-56.
106.    Wang H, Dong X, Liu Z, Zhu S, Liu H, Fan W, Hu Y, Hu T, Yu Y, Li Y, Liu T. Resveratrol suppresses rotenone‐induced neurotoxicity through activation of SIRT1/Akt1 signaling pathway. The Anatomical Record. 2018 Jun; 301(6):1115-25.
107.    Palle S, Neerati P. Improved neuroprotective effect of resveratrol nanoparticles as evinced by abrogation of rotenone-induced behavioral deficits and oxidative and mitochondrial dysfunctions in rat model of Parkinson’s disease. Naunyn-Schmiedeberg's Archives of Pharmacology. 2018 Apr; 391(4): 445-53.

Recomonded Articles:

Author(s): Gautam Kumar, Ravi Kumar, Harshit Rana

DOI: 10.52711/2321-5836.2023.00007         Access: Open Access Read More

Author(s): Purnendu Panda, Banamali Das, DS Sahu, SK Meher, Das, GC Nanda.

DOI: Not Available         Access: Open Access Read More

Author(s): Srinibash Sahoo, S. H. Doddamani, H. K. Panigrahi

DOI: 10.5958/2321-5836.2020.00027.0         Access: Open Access Read More

Author(s): Dipsundar Sahu, Shakti Bhushan, Debajyoti Das, Saroj Kumar Debnath, Laxmidhar Barik, Vandana Meena, Vikas Singh, Amit Kumar Dixit, PVV Prasad

DOI: 10.52711/2321-5836.2021.00015         Access: Open Access Read More

Author(s): Punita R Maurya, Yadunath M Joshi, Vilasrao J Kadam.

DOI: Not Available         Access: Open Access Read More

Author(s): Akanksha Pandey, Nikita Saraswat, Pranay Wal, Rashmi Saxena Pal, Ankita Wal, Deepa Maurya

DOI: 10.5958/2321-5836.2019.00029.6         Access: Open Access Read More

Author(s): Lubna Azmi, Shyam Sundar Gupta, Ila Shukla, Padam Kant, O. P. Sidhu, Ch. V. Rao

DOI: 10.5958/2321-5836.2017.00001.5         Access: Open Access Read More

Author(s): Ambika Nand Jha, Dhaval M. Patel, Jignesh S Patel, Upama N. Trivedi, Akshay H. Shah

DOI: 10.52711/2321-5836.2021.00012         Access: Open Access Read More

Author(s): Archana R Dhole, Vikas R Dhole, Chandrakant S Magdum, Shreenivas Mohite.

DOI: Not Available         Access: Open Access Read More

Author(s): Kanase KG, Shinde NV, Bharti DK, Undale VR, Bhosale AV.

DOI: Not Available         Access: Open Access Read More

Author(s): Sathyaseelan Thennarasan, Subbiah Murugesan, Vajiravelu Sivamurugan

DOI: 10.5958/2321-5836.2017.00011.8         Access: Open Access Read More

Author(s): AV Jaydeokar, DD Bandawane, SS Nipate , PD. Chaudhari.

DOI: Not Available         Access: Open Access Read More

Author(s): Vandna Dewangan, Himanshu Pandey

DOI: 10.5958/2321-5836.2017.00039.8         Access: Open Access Read More

Author(s): Manan A Patel, Chetan M Patel, Dipen B Patel, IS Anand , CN Patel.

DOI: Not Available         Access: Open Access Read More

Author(s): Sudhakar P, Poorana Pushkalai S, Sabarinath C, Priyadharshini S, Haripriya S

DOI: 10.5958/2321-5836.2018.00002.2         Access: Open Access Read More

Author(s): Pankaj Rakha, Raj Kumar, Supriya, Nidhi, Manju Nagpal , Gitika Arora.

DOI: Not Available         Access: Open Access Read More

Author(s): SC Shivhare, Arjun O Patidar, KG Malviya, K Venkatesh , Kuldeep Rathod.

DOI: Not Available         Access: Open Access Read More

Author(s): DS Patel, IS Anand, PA Bhatt.

DOI: Not Available         Access: Open Access Read More

Author(s): SM Bhanushali, KM Modh, IS Anand, CN Patel , JB Dave.

DOI: Not Available         Access: Open Access Read More

Research Journal of Pharmacology and Pharmacodynamics (RJPPD) is an international, peer-reviewed journal....... Read more >>>

RNI: Not Available                     
DOI: 10.5958 2321-5836 

Journal Policies & Information




Recent Articles




Tags