Author(s):
Dipsundar Sahu, Shakti Bhushan, Debajyoti Das, Saroj Kumar Debnath, Laxmidhar Barik, Vandana Meena, Vikas Singh, Amit Kumar Dixit, PVV Prasad
Email(s):
drdssahu@gmail.com
DOI:
10.52711/2321-5836.2021.00015
Address:
Dipsundar Sahu1, Shakti Bhushan1, Debajyoti Das1, Saroj Kumar Debnath1, Laxmidhar Barik1, Vandana Meena2, Vikas Singh3 , Amit Kumar Dixit4, PVV Prasad5
1Research Officer (Ayu.), Central Ayurveda Research Institute, Kolkata, CCRAS, Ministry of Ayush, Government of India.
2Ph.D. Scholar, Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi (U.P.), India.
3Assistant Professor, Department of Roga nidana, Shri Krishna Ayurvedic Medical College and Hospital, Varanasi, UP.
4Assistant Director (Bio. Chem.), Central Ayurveda Research Institute, Kolkata, CCRAS, Ministry of Ayush, Government of India.
5Director, Central Ayurveda Research Institute, Kolkata, CCRAS, Ministry of Ayush, Government of India.
*Corresponding Author
Published In:
Volume - 13,
Issue - 2,
Year - 2021
ABSTRACT:
In herbal medicine, there is a substantial amount of variety of plants have been used to treat neurodegenerative disorders including Alzheimer's (AD)as well as other memory-related issues. Dementia is a neurological condition characterised by a progressive loss in emotional and cognitive abilities. Dementia is linked to a number of conditions like inadequate cerebral blood flow, poison toxicity, and other risk factors and conditions mitochondrial dysfunction, oxidative injury, and, in certain cases coexistence with other diseases like Alzheimer's disease (AD), Huntington's disease, Parkinson's syndrome (PD) and Attention Deficit Hyperactivity Disorder (ADHD).Despite the fact that there are well-established semi-synthetic medications for the treatment of AD and AD-related dementia, the majority of them have a number of side effects. As a result, conventional medicine offers a variety of plant-derived lead molecules that may be valuable in future medical studies. In this paper, we look at how ayurvedic plants are used to treat neurodegenerative disease around the world. Plants are also neuroprotective against proinflammatory cytokines including IL-6, IL-1b, TNF-a and it was reported that Antioxidant activity was increased, oxidant levels were reduced, and acetylcholinesterase activity was inhibited in the nervous system by these medicinal plants. We've highlighted the most essential ayurvedic medicinal plants as well as their biochemical effects. As a result, the effects of the above medicinals plants and their active constituents strengthened neurodegenerative conditions, indicating their therapeutic potential in ailments like Alzheimer's disease. and depression that are linked to neuroinflammation and neurotransmitter dysfunction.
Cite this article:
Dipsundar Sahu, Shakti Bhushan, Debajyoti Das, Saroj Kumar Debnath, Laxmidhar Barik, Vandana Meena, Vikas Singh, Amit Kumar Dixit, PVV Prasad. Potential Ayurvedic Herbs for Neurodegenerative Diseases: A review. Research Journal of Pharmacology and Pharmacodynamics. 2021; 13(2):69-4. doi: 10.52711/2321-5836.2021.00015
Cite(Electronic):
Dipsundar Sahu, Shakti Bhushan, Debajyoti Das, Saroj Kumar Debnath, Laxmidhar Barik, Vandana Meena, Vikas Singh, Amit Kumar Dixit, PVV Prasad. Potential Ayurvedic Herbs for Neurodegenerative Diseases: A review. Research Journal of Pharmacology and Pharmacodynamics. 2021; 13(2):69-4. doi: 10.52711/2321-5836.2021.00015 Available on: https://rjppd.org/AbstractView.aspx?PID=2021-13-2-9
REFERENCES:
1. Rehman MU, Wali AF, Ahmad A, Shakeel S, Rasool S, Ali R, et al. Neuroprotective Strategies for Neurological Disorders by Natural Products: An update. Curr Neuropharmacol 2018;17:247–67. doi:10.2174/1570159x16666180911124605.
2. Venkatesan R, Ji E, Kim SY. Phytochemicals that regulate neurodegenerative disease by targeting neurotrophins: A comprehensive review. Biomed Res Int 2015;2015. doi:10.1155/2015/814068.
3. Nishteswar K, Karra R, Joshi H. Role of indigenous herbs in the management of Alzheimer′s disease. Anc Sci Life 2014;34:3. doi:10.4103/0257-7941.150763.
4. Mishra R, Manchanda S, Gupta M, Kaur T, Saini V, Sharma A, et al. Tinospora cordifolia ameliorates anxiety-like behavior and improves cognitive functions in acute sleep deprived rats. Sci Rep 2016;6:1–15. doi:10.1038/srep25564.
5. Singh S, Tapadia MG. Molecular basis for efficacy of Guduchi and Madhuyashti feeding on different environmental stressors in Drosophila. Cell Stress Chaperones 2019;24:549–65. doi:10.1007/s12192-019-00986-0.
6. Sharma A, Kaur G. Tinospora cordifolia as a potential neuroregenerative candidate against glutamate induced excitotoxicity: An in vitro perspective 11 Medical and Health Sciences 1109 Neurosciences. BMC Complement Altern Med 2018;18:1–17. doi:10.1186/s12906-018-2330-6.
7. Malve HO. Exploring Bhavana samskara using Tinospora cordifolia and Phyllanthus emblica combination for learning and memory in mice. J Ayurveda Integr Med 2015;6:233–40. doi:10.4103/0975-9476.157953.
8. Kosaraju J, Chinni S, Roy PD, Kannan E, Antony AS, Kumar MNS. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism. Indian J Pharmacol 2014;46:176–80. doi:10.4103/0253-7613.129312.
9. Lieu CA, Venkiteswaran K, Gilmour TP, Rao AN, Petticoffer AC, Gilbert E V., et al. The antiparkinsonian and antidyskinetic mechanisms of Mucuna pruriens in the MPTP-treated nonhuman primate. Evidence-Based Complement Altern Med 2012;2012. doi:10.1155/2012/840247.
10. Rai SN, Birla H, Singh SS, Zahra W, Patil RR, Jadhav JP, et al. Mucuna pruriens protects against MPTP intoxicated neuroinflammation in Parkinson’s disease through NF-κB/pAKT signaling pathways. Front Aging Neurosci 2017;9:1–14. doi:10.3389/fnagi.2017.00421.
11. Cilia R, Laguna J, Cassani E, Cereda E, Pozzi NG, Isaias IU, et al. Mucuna pruriens in Parkinson disease . Neurology 2017;89:432–8. doi:10.1212/wnl.0000000000004175.
12. Eunsung Mouradian MM. Genetic changes NIH Public Access. Bone 2008;23:1–7. doi:10.1016/j.parkreldis.2010.04.015.A.
13. Johnson SL, Park HY, Dasilva NA, Vattem DA, Ma H, Seeram NP. Levodopa-reduced mucuna pruriens seed extract shows neuroprotective effects against parkinson’s disease in murine microglia and human neuroblastoma cells, Caenorhabditis elegans, and Drosophila melanogaster. Nutrients 2018;10:1–14. doi:10.3390/nu10091139.
14. Poddighe S, De Rose F, Marotta R, Ruffilli R, Fanti M, Secci PP, et al. Mucuna pruriens(Velvet bean) rescues motor, olfactory, mitochondrial and synaptic impairment in PINK1B9 Drosophila melanogaster genetic model of Parkinson’s disease. PLoS One 2014;9. doi:10.1371/journal.pone.0110802.
15. Katzenshlager R, Evans A, Manson A, Palsalos PN, Ratnaraj N, Watt H, et al. Mucuna pruriens in Parkinson’s disease: A double blind clinical and pharmacological study. J Neurol Neurosurg Psychiatry 2004;75:1672–7. doi:10.1136/jnnp.2003.028761.
16. Adi YK, Widayanti R, Pangestiningsih TW. n-Propanol extract of boiled and fermented koro benguk (Mucuna pruriens seed) shows a neuroprotective effect in paraquat dichloride-induced Parkinson’s disease rat model. Vet World 2018;11:1250–4. doi:10.14202/vetworld.2018.1250-1254.
17. Bihaqi S, Singh A, Tiwari M. Supplementation of Convolvulus pluricaulis attenuates scopolamine-induced increased tau and Amyloid precursor protein (AβPP) expression in rat brain. Indian J Pharmacol 2012;44:593–8. doi:10.4103/0253-7613.100383.
18. Rachitha P, Krupashree K, Jayashree G V., Kandikattu HK, Amruta N, Gopalan N, et al. Chemical composition, antioxidant potential, macromolecule damage and neuroprotective activity of Convolvulus pluricaulis. J Tradit Complement Med 2018;8:483–96. doi:10.1016/j.jtcme.2017.11.002.
19. Binti Mohd Yusuf Yeo NA, Muthuraju S, Wong JH, Mohammed FR, Senik MH, Zhang J, et al. Hippocampal amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid GluA1 (AMPA GluA1) receptor subunit involves in learning and memory improvement following treatment with Centella asiatica extract in adolescent rats. Brain Behav 2018;8:1–14. doi:10.1002/brb3.1093.
20. Kate Shannon . GODPJSJMCFRN. Myocardial extraction from neonatal rats HHS Public Access. Physiol Behav 2016;176:139–48. doi:10.1016/j.neulet.2017.02.072.Centella.
21. Yadav MK, Singh SK, Singh M, Mishra SS, Singh AK, Tripathi JS, et al. Neuroprotective activity of evolvulus alsinoides and centella asiatica ethanolic extracts in scopolamine-induced amnesia in swiss albino mice. Open Access Maced J Med Sci 2019;7:1059–66. doi:10.3889/oamjms.2019.247.
22. den Haan J, Morrema THJ, Rozemuller AJ, Bouwman FH, Hoozemans JJM. Different curcumin forms selectively bind fibrillar amyloid beta in post mortem Alzheimer’s disease brains: Implications for in-vivo diagnostics. Acta Neuropathol Commun 2018;6:75. doi:10.1186/s40478-018-0577-2.
23. Del Prado-Audelo ML, Caballero-Florán IH, Meza-Toledo JA, Mendoza-Muñoz N, González-Torres M, Florán B, et al. Formulations of curcumin nanoparticles for brain diseases. Biomolecules 2019;9:1–28. doi:10.3390/biom9020056.
24. Lee W-H, Loo C-Y, Bebawy M, Luk F, Mason R, Rohanizadeh R. Curcumin and its Derivatives: Their Application in Neuropharmacology and Neuroscience in the 21st Century. Curr Neuropharmacol 2013;11:338–78. doi:10.2174/1570159x11311040002.
25. Pluta R, Ułamek-Kozioł M, Czuczwar SJ. Neuroprotective and neurological/cognitive enhancement effects of curcumin after brain ischemia injury with alzheimer’s disease phenotype. Int J Mol Sci 2018;19. doi:10.3390/ijms19124002.
26. Yavarpour-Bali H, Pirzadeh M, Ghasemi-Kasman M. Curcumin-loaded nanoparticles: A novel therapeutic strategy in treatment of central nervous system disorders. Int J Nanomedicine 2019;14:4449–60. doi:10.2147/IJN.S208332.
27. Eunsung Mouradian MM. Genetic changes NIH Public Access. Bone 2008;23:1–7. doi:10.1016/j.jconrel.2013.06.032.A.
28. Kate Shannon . GODPJSJMCFRN. Myocardial extraction from neonatal rats HHS Public Access. Physiol Behav 2016;176:139–48. doi:10.1586/14737175.2015.1044981.Clinical.
29. Husain I, Akhtar M, Madaan T, Vohora D, Abdin MZ, Islamuddin M, et al. Tannins enriched fraction of emblica officinalis fruits alleviates high-salt and cholesterol diet-induced cognitive impairment in rats via Nrf2-ARE pathway. Front Pharmacol 2018;9:1–15. doi:10.3389/fphar.2018.00023.
30. Puppala M, Ponder J, Suryanarayana P, Reddy GB, Petrash M, LaBarbera D V. The isolation and characterization of β-glucogallin as a novel aldose reductase inhibitor from emblica officinalis. PLoS One 2012;7. doi:10.1371/journal.pone.0031399.
31. Lee J, Lim E, Kim Y, Li E, Park S. Ghrelin attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. J Endocrinol 2010;205:263–70. doi:10.1677/JOE-10-0040.
32. Orlando G, Chiavaroli A, Leone S, Brunetti L, Politi M, Menghini L, et al. Inhibitory effects induced by Vicia faba, Uncaria rhyncophylla, and Glycyrrhiza glabra water extracts on oxidative stress biomarkers and dopamine turnover in hypoE22 cells and isolated rat striatum challenged with 6-hydroxydopamine. Antioxidants 2019;8. doi:10.3390/antiox8120602.
33. Kandhare AD, Mukherjee AA, Bodhankar SL. Neuroprotective effect of Azadirachta indica standardized extract in partial sciatic nerve injury in rats: Evidence from anti-inflammatory, antioxidant and anti-apoptotic studies. EXCLI J 2017;16:546–65. doi:10.17179/excli2017-161.
34. Sriraksa N, Kongsui R, Thongrong S, Duangjai A, Hawiset T. Effect of Azadirachta indica flower extract on functional recovery of sciatic nerve crush injury in rat models of DM. Exp Ther Med 2019;17:541–50. doi:10.3892/etm.2018.6931.