Author(s): Sk Mahbub Alam, Aishwarya Mondal, Subhajit Mukherjee, Saikat Prodhan, Snehasis Jana, Sanchari Chatterjee, Rohan Pal

Email(s): rohan.p@snuniv.ac.in

DOI: 10.52711/2321-5836.2025.00044   

Address: Sk Mahbub Alam1, Aishwarya Mondal1, Subhajit Mukherjee1, Saikat Prodhan1, Snehasis Jana2, Sanchari Chatterjee3, Rohan Pal4*
1Department of Pharmacology, Global College of Pharmaceutical Technology, Krishnagar, Nadia, West Bengal, 741102.
2Assistant Professor, Department of Pharmacology, Global College of Pharmaceutical Technology, Krishnagar, Nadia, West Bengal, 741102.
3Assistant Professor, Department of Pharmaceutics, Global College of Pharmaceutical Technology, Krishnagar, Nadia, West Bengal, 741102.
4Assistant Professor, School of Pharmacy, Sister Nivedita University, DG Block (Newtown), Chakpachuria, West Bengal 700156.
*Corresponding Author

Published In:   Volume - 17,      Issue - 4,     Year - 2025


ABSTRACT:
Numerous biological pathways contribute to the formation and progression of cancer, making it a complex illness. Different molecular participants in various cell signalling cascades must be the focus of effective cancer medications. Myricetin, an isoflavone found in various fruits, vegetables, nuts, berries, and herbs, has been shown to modulate key pathways promoting the survival of cancerous cells. However, its limited bioavailability, pH, and poor water solubility make it difficult to employ clinically. Research is ongoing to develop nano-formulations to enhance bioavailability and absorption, but further research is needed to determine the most effective targeting of the cellular network. Myricetin, a natural flavonoid, has drawn interest because of its anti-inflammatory, anti-oxidant, and anti-cancer properties. Modern molecular methods have illuminated the relationship between dysregulated signal and myricetin. Pathways in the invasion, spread, and development of cancer. However, there is currently limited information available regarding myricetin nano-delivery systems in cancer. In this evaluation, we have included every item in great depth. Considering myricetin-mediated control over many cellular pathways, its consequences for preventing cancer, preclinical and clinical studies and the nano-formulations that are currently on the market for the treatment of different cancers.


Cite this article:
Sk Mahbub Alam, Aishwarya Mondal, Subhajit Mukherjee, Saikat Prodhan, Snehasis Jana, Sanchari Chatterjee, Rohan Pal. The Molecular Actions of Myricetin and Targeting Cell Signalling Pathways in Cancer Treatment. Research Journal of Pharmacology and Pharmacodynamics. 2025;17(4):275-4. doi: 10.52711/2321-5836.2025.00044

Cite(Electronic):
Sk Mahbub Alam, Aishwarya Mondal, Subhajit Mukherjee, Saikat Prodhan, Snehasis Jana, Sanchari Chatterjee, Rohan Pal. The Molecular Actions of Myricetin and Targeting Cell Signalling Pathways in Cancer Treatment. Research Journal of Pharmacology and Pharmacodynamics. 2025;17(4):275-4. doi: 10.52711/2321-5836.2025.00044   Available on: https://rjppd.org/AbstractView.aspx?PID=2025-17-4-6


REFERENCES:
1.    Hou W, Hu S, Su Z, et al. Myricetin attenuates LPS-induced inflammation in RAW 264.7 macrophages and mouse models. Future Med Chem. 2018; 10(19): 2253-2264. doi:10.4155/FMC-2018-0172,
2.    Jiang M, Zhu M, Wang L, Yu S. Anti-tumor effects and associated molecular mechanisms of myricetin. Biomedicine and Pharmacotherapy. 2019; 120. doi: 10.1016/j.biopha.2019.109506
3.    Stoll S, Bitencourt S, Laufer S, Inês Goettert M. Myricetin inhibits panel of kinases implicated in tumorigenesis. Basic Clin Pharmacol Toxicol. 2019; 125(1): 3-7. doi:10.1111/BCPT.13201; Ctype: String: Journal
4.    Jiang S, Tang X, Chen M, et al. Design, synthesis and antibacterial activities against Xanthomonas oryzae pv. oryzae, Xanthomonas axonopodis pv. Citri and Ralstonia solanacearum of novel myricetin derivatives containing sulfonamide moiety. Pest Manag Sci. 2020; 76(3): 853-860. doi:10.1002/PS.5587
5.    Ortega JT, Suárez AI, Serrano ML, Baptista J, Pujol FH, Rangel HR. The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro. AIDS Res Ther. 2017; 14(1). doi:10.1186/S12981-017-0183-6
6.    Ren R, Yin S, Lai B, et al. Myricetin antagonizes semen-derived enhancer of viral infection (SEVI) formation and influences its infection-enhancing activity. Retrovirology. 2018; 15(1). doi:10.1186/S12977-018-0432-3
7.    Hu T, Yuan X, Wei G, Luo H, Lee HJ, Jin W. Myricetin-induced brown adipose tissue activation prevents obesity and insulin resistance in db/db mice. Eur J Nutr. 2018; 57(1): 391-403. doi:10.1007/S00394-017-1433-Z
8.    Wang L, Wu H, Yang F, Dong W. The protective effects of myricetin against cardiovascular disease. J Nutr Sci Vitaminol (Tokyo). 2019;65(6):470-476. doi:10.3177/JNSV.65.470
9.    Ahmed S, Khan H, Aschner M, Hasan MM, Hassan STS. Therapeutic potential of naringin in neurological disorders. Food and Chemical Toxicology. 2019; 132. doi: 10.1016/j.fct.2019.110646
10.    Guo C, Xue G, Pan B, et al. Myricetin Ameliorates Ethanol-Induced Lipid Accumulation in Liver Cells by Reducing Fatty Acid Biosynthesis. Mol Nutr Food Res. 2019; 63(14). doi:10.1002/MNFR.201801393,
11.    Sharma R, Abbasi-Kangevari M, Abd-Rabu R, et al. Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Gastroenterol Hepatol. 2022; 7(7):627-647. doi:10.1016/S2468-1253(22)00044-9
12.    Mitrut P, Docea A, Kamal A, Mitrut R, Calina D. Colorectal cancer and inflammatory bowel disease. Published online 2016. Accessed May 1, 2025. 
13.    Yadav AR, Mohite SK. Cancer-A silent killer: An overview. Asian Journal of Pharmaceutical Research. 2020; 10(3): 213. doi:10.5958/2231-5691.2020.00036.2
14.    Sharifi-Rad J, Quispe C, Butnariu M, et al. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int. 2021; 21(1). doi:10.1186/S12935-021-02025-4
15.    Sharifi-Rad J, Quispe C, Patra JK, et al. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. Oxid Med Cell Longev. 2021; 2021(1): 3687700. doi:10.1155/2021/3687700
16.    Cano A, Espina M, García ML. Recent Advances on Antitumor Agents-loaded Polymeric and Lipid-based Nanocarriers for the Treatment of Brain Cancer. Curr Pharm Des. 2020; 26(12): 1316-1330. doi:10.2174/1381612826666200116142922
17.    Kamble DD, Maner SS, Jadhav PP. Conventional and Modern Techniques to Treat Cancer. Asian Journal of Pharmaceutical Research. Published online September 20, 2024: 303-308. doi:10.52711/2231-5691.2024.00047
18.    Jisha K, Venkateswaramurthy N, Sambathkumar R. The Influence of Pharmacogenetics in Cancer Chemotherapy. Research Journal of Pharmacology and Pharmacodynamics. 2020; 12(1): 29-33. doi:10.5958/2321-5836.2020.00007.5
19.    Grace CSrP, Tomy AT, Benny A, et al. Knowledge of Adolescents regarding Cancer Prevention and Factors Contributing to Cancer. Asian Journal of Nursing Education and Research. 2019; 9(4): 515. doi:10.5958/2349-2996.2019.00109.5
20.    Calina D, Buga AM, Mitroi M, et al. The treatment of cognitive, behavioural and motor impairments from brain injury and neurodegenerative diseases through cannabinoid system modulation—evidence from in vivo studies. J Clin Med. 2020; 9(8): 1-28. doi:10.3390/JCM9082395
21.    Salehi B, Quispe C, Chamkhi I, et al. Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence. Front Pharmacol. 2021; 11: 592654. doi:10.3389/FPHAR.2020.592654
22.    Sharifi-Rad J, Quispe C, Shaheen S, et al. Flavonoids as potential anti-platelet aggregation agents: from biochemistry to health promoting abilities. Crit Rev Food Sci Nutr. 2022;62(29):8045-8058. doi:10.1080/10408398.2021.1924612
23.    Mishra S, Verma SS, Rai V, et al. Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cell Mol Life Sci. 2019; 76(10): 1947. doi:10.1007/S00018-019-03053-0
24.    Newman DJ, Cragg GM. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J Nat Prod. 2020; 83(3): 770-803. doi: 10.1021/ACS.JNATPROD.9B01285
25.    Bahaloo M, Rezvani ME, Yazd EF, et al. Effect of myricetin on the gene expressions of NOX3, TGF-β1, prestin, and HSP-70 and anti-oxidant activity in the cochlea of noise-exposed rats. Iran J Basic Med Sci. 2020; 23(5): 594. doi:10.22038/IJBMS.2020.41007.9693
26.    Zhang Q, Zhao Y, Zhang M, Zhang Y, Ji H, Shen L. Recent advances in research on vine tea, a potential and functional herbal tea with dihydromyricetin and myricetin as major bioactive compounds. J Pharm Anal. 2020; 11(5): 555. doi: 10.1016/J.JPHA.2020.10.002
27.    Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017; 168(6): 960. doi: 10.1016/J.CELL.2017.02.004
28.    Zou Z, Tao T, Li H, Zhu X. MTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci. 2020; 10(1): 1-11. doi:10.1186/S13578-020-00396-1/TABLES/2
29.    Ah Kang K, Wang ZH, Zhang R, et al. Myricetin Protects Cells against Oxidative Stress-Induced Apoptosis via Regulation of PI3K/Akt and MAPK Signaling Pathways. Int J Mol Sci. 2010; 11(11):4348. doi:10.3390/IJMS11114348
30.    Kumamoto T, Fujii M, Hou DX. Akt is a direct target for myricetin to inhibit cell transformation. Mol Cell Biochem. 2009;332(1-2):33-41. doi:10.1007/S11010-009-0171-9
31.    Jung SK, Lee KW, Byun S, et al. Myricetin inhibits UVB-induced angiogenesis by regulating PI-3 kinase in vivo. Carcinogenesis. 2009; 31(5): 911-917. doi:10.1093/CARCIN/BGP221
32.    Phillips PA, Sangwan V, Borja-Cacho D, Dudeja V, Vickers SM, Saluja AK. Myricetin Induces Pancreatic Cancer Cell Death via the Induction of Apoptosis and Inhibition of the Phosphatidylinositol 3-Kinase (PI3K) Signaling Pathway. Cancer Lett. 2011; 308(2): 181. doi:10.1016/J.CANLET.2011.05.002
33.    Li W, Xu C, Hao C, et al. Inhibition of herpes simplex virus by myricetin through targeting viral gD protein and cellular EGFR/PI3K/Akt pathway. Antiviral Res. 2020; 177: 104714. doi:10.1016/J.ANTIVIRAL.2020.104714
34.    Cao J, Chen H, Lu W, et al. Myricetin Induces Protective Autophagy by Inhibiting the Phosphorylation of mTOR in HepG2 Cells. Anatomical Record. 2018; 301(5): 786-795. doi:10.1002/AR.23754
35.    Kim GD. Myricetin Inhibits Angiogenesis by Inducing Apoptosis and Suppressing PI3K/Akt/mTOR Signaling in Endothelial Cells. J Cancer Prev. 2017; 22(4): 219. doi:10.15430/JCP.2017.22.4.219
36.    Zhang XH, Chen SY, Tang L, et al. Myricetin Induces Apoptosis in HepG2 Cells Through Akt/p70S6K/Bad Signaling and Mitochondrial Apoptotic Pathway. Anticancer Agents Med Chem. 2013; 13(10): 1575-1581. doi:10.2174/1871520613666131125123059
37.    Quan Y, Wang N, Chen Q, et al. SIRT3 inhibits prostate cancer by destabilizing oncoprotein c-MYC through regulation of the PI3K/Akt pathway. Oncotarget. 2015; 6(28): 26494-26507. doi:10.18632/ONCOTARGET.4764
38.    Wang G, Wang JJ, Wang YZ, Feng S, Jing G, Fu XL. Myricetin nanoliposomes induced SIRT3-mediated glycolytic metabolism leading to glioblastoma cell death. Artif Cells Nanomed Biotechnol. 2018; 46(sup3): S180-S191. doi:10.1080/21691401.2018.1489825
39.    Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017; 2(1):1-9. doi:10.1038/SIGTRANS.2017.23
40.    Zhu M mao, Wang L, Yang D, et al. Wedelolactone alleviates doxorubicin-induced inflammation and oxidative stress damage of podocytes by IκK/IκB/NF-κB pathway. Biomedicine and Pharmacotherapy. 2019; 117. doi:10.1016/j.biopha.2019.109088
41.    Kan X, Liu B, Guo W, et al. Myricetin relieves LPS-induced mastitis by inhibiting inflammatory response and repairing the blood–milk barrier. J Cell Physiol. 2019; 234(9): 16252-16262. doi:10.1002/JCP.28288
42.    Qiu Y, Cong N, Liang M, Wang Y, Wang J. Systems Pharmacology Dissection of the Protective Effect of Myricetin Against Acute Ischemia/Reperfusion-Induced Myocardial Injury in Isolated Rat Heart. Cardiovasc Toxicol. 2017; 17(3): 277-286. doi:10.1007/S12012-016-9382-Y
43.    Zhang N, Feng H, Liao HH, et al. Myricetin attenuated LPS induced cardiac injury in vivo and in vitro. Phytotherapy Research. 2018; 32(3): 459-470. doi:10.1002/PTR.5989
44.    Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis. 2017; 1863(2): 585-597. doi:10.1016/J.BBADIS.2016.11.005
45.    Shih YW, Wu PF, Lee YC, Shi M Der, Chiang TA. Myricetin suppresses invasion and migration of human lung adenocarcinoma a549 cells: Possible mediation by blocking the erk signaling pathway. J Agric Food Chem. 2009; 57(9): 3490-3499. doi:10.1021/JF900124R
46.    Xie J, Zheng Y. Myricetin protects keratinocyte damage induced by UV through IκB/NFκb signaling pathway. J Cosmet Dermatol. 2017;16(4):444-449. doi:10.1111/JOCD.12399
47.    Javed Z, Khan K, Herrera-Bravo J, et al. Myricetin: targeting signaling networks in cancer and its implication in chemotherapy. Cancer Cell International 2022 22:1. 2022; 22(1): 1-13. doi:10.1186/S12935-022-02663-2
48.    Chang F, Steelman LS, Lee JT, et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: Potential targeting for therapeutic intervention. Leukemia. 2003; 17(7): 1263-1293. doi:10.1038/SJ.LEU.2402945
49.    Jung SK, Lee KW, Kim HY, et al. Myricetin suppresses UVB-induced wrinkle formation and MMP-9 expression by inhibiting Raf. Biochem Pharmacol. 2010; 79(10): 1455-1461. doi:10.1016/J.BCP.2010.01.004
50.    Lee KW, Kang NJ, Rogozin EA, et al. Myricetin is a novel natural inhibitor of neoplastic cell transformation and MEK1. Carcinogenesis. 2007; 28(9): 1918-1927. doi:10.1093/CARCIN/BGM110
51.    Zhou Z, Mao W, Li Y, Qi C, He Y. Myricetin Inhibits Breast Tumor Growth and Angiogenesis by Regulating VEGF/VEGFR2 and p38MAPK Signaling Pathways. Anatomical Record. 2019; 302(12): 2186-2192. doi:10.1002/AR.24222
52.    Javed Z, Khan K, Herrera-Bravo J, et al. Myricetin: targeting signaling networks in cancer and its implication in chemotherapy. Cancer Cell Int. 2022; 22(1): 239. doi:10.1186/S12935-022-02663-2
53.    Ci Y, Zhang Y, Liu Y, et al. Myricetin suppresses breast cancer metastasis through down-regulating the activity of matrix metalloproteinase (MMP)-2/9. Phytotherapy Research. 2018; 32(7): 1373-1381. doi:10.1002/PTR.6071
54.    Ko SY. Myricetin suppresses LPS-induced MMP expression in human gingival fibroblasts and inhibits osteoclastogenesis by downregulating NFATc1 in RANKL-induced RAW 264.7 cells. Arch Oral Biol. 2012; 57(12): 1623-1632. doi:10.1016/J.ARCHORALBIO.2012.06.012
55.    Brooks AJ, Putoczki T. JAK-STAT Signalling Pathway in Cancer. Cancers (Basel). 2020; 12(7): 1971. doi:10.3390/CANCERS12071971
56.    Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Communication and Signaling.  2017; 15(1):1-13. doi:10.1186/S12964-017-0177-Y
57.    Kumamoto T, Fujii M, Hou DX. Myricetin directly targets JAK1 to inhibit cell transformation. Cancer Lett. 2009; 275(1): 17-26. doi:10.1016/J.CANLET.2008.09.027
58.    Tuponchai P, Kukongviriyapan V, Prawan A, Kongpetch S, Senggunprai L. Myricetin ameliorates cytokine-induced migration and invasion of cholangiocarcinoma cells via suppression of STAT3 pathway. J Cancer Res Ther. 2019; 15(1): 157-163. doi:10.4103/JCRT.JCRT_287_17
59.    Liao HH, Zhang N, Meng YY, et al. Myricetin Alleviates Pathological Cardiac Hypertrophy via TRAF6/TAK1/MAPK and Nrf2 Signaling Pathway. Oxid Med Cell Longev. 2019; 2019. doi:10.1155/2019/6304058
60.    Qin S, Chen J, Tanigawa S, Hou DX. Microarray and pathway analysis highlight Nrf2/ARE-mediated expression profiling by polyphenolic myricetin. Mol Nutr Food Res. 2013; 57(3): 435-446. doi:10.1002/MNFR.201200563
61.    Nunes C, Teixeira N, Serra D, Freitas V, Almeida L, Laranjinha J. Red wine polyphenol extract efficiently protects intestinal epithelial cells from inflammation via opposite modulation of JAK/STAT and Nrf2 pathways. Toxicol Res (Camb). 2015; 5(1): 53. doi:10.1039/C5TX00214A
62.    D’Ambrosio M, Bigagli E, Cinci L, et al. Ethyl acetate extract from Cistus x incanus L. leaves enriched in myricetin and quercetin derivatives, inhibits inflammatory mediators and activates Nrf2/HO-1 pathway in LPS-stimulated RAW 264.7 macrophages. Zeitschrift fur Naturforschung - Section C Journal of Biosciences. 2021; 76(1-2): 79-86. doi:10.1515/ZNC-2020-0053
63.    Wu Y, Zhou BP. TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 2010; 102(4): 639. doi:10.1038/SJ.BJC.6605530
64.    Zhou XL, Yang J, Qu XJ, Meng J, Miao RR, Cui SX. M10, a Myricetin-3-O-b-D-Lactose Sodium Salt, Prevents Ulcerative Colitis Through Inhibiting Necroptosis in Mice. Front Pharmacol. 2020;11. doi:10.3389/FPHAR.2020.557312
65.    Sun J, Sun J, Zhou X. Protective functions of myricetin in LPS-induced cardiomyocytes H9c2 cells injury by regulation of MALAT1. Eur J Med Res. 2019; 24(1). doi:10.1186/S40001-019-0378-5
66.    Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta Mol Cell Res. 2016; 1863(12): 2977-2992. doi:10.1016/J.BBAMCR.2016.09.012
67.    Yoshida K, Miki Y. The cell death machinery governed by the p53 tumor suppressor in response to DNA damage. Cancer Sci. 2010; 101(4): 831-835. doi:10.1111/J.1349-7006.2010.01488.X
68.    Song X, Tan L, Wang M, et al. Myricetin: A review of the most recent research. Biomedicine and Pharmacotherapy. 2021; 134. doi:10.1016/J.BIOPHA.2020.111017
69.    Bhatt S, Manhas D, Kumar V, et al. Effect of Myricetin on CYP2C8 Inhibition to Assess the Likelihood of Drug Interaction Using In Silico, In Vitro, and In Vivo Approaches. ACS Omega. 2022; 7(15): 13260-13269. doi:10.1021/ACSOMEGA.2C00726/SUPPL_FILE/AO2C00726_SI_001.PDF
70.    Munro AW, McLean KJ, Grant JL, Makris TM. Structure and function of the cytochrome P450 peroxygenase enzymes. Biochem Soc Trans. 2018; 46(1):183-196. doi:10.1042/BST20170218,
71.    Huang Y, Zheng SL, Zhu HY, Xu ZS, Xu RA. Effects of aescin on cytochrome P450 enzymes in rats. J Ethnopharmacol. 2014; 151(1): 583-590. doi:10.1016/J.JEP.2013.11.016
72.    Jarrar Y, Lee SJ. The Functionality of UDP-Glucuronosyltransferase Genetic Variants and their Association with Drug Responses and Human Diseases. J Pers Med. 2021; 11(6): 554. doi:10.3390/JPM11060554
73.    Li X, Wang C, Chen J, et al. Potential interactions among myricetin and dietary flavonols through the inhibition of human UDP-glucuronosyltransferase in vitro. Toxicol Lett. 2022; 358: 40-47. doi: 10.1016/J.TOXLET.2022.01.007
74.    He Y, Sun MM, Zhang GG, et al. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduction and Targeted Therapy. 2021; 6(1):1-17. doi:10.1038/s41392-021-00828-5
75.    Fresno Vara JÁ, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. P13K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004; 30(2): 193-204. doi: 10.1016/j.ctrv.2003.07.007
76.    Peng Y, Wang Y, Zhou C, Mei W, Zeng C. PI3K/Akt/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Front Oncol. 2022; 12: 819128. doi:10.3389/FONC.2022.819128/XML/NLM
77.    Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol. 2014; 4 APR: 67531. doi:10.3389/FONC.2014.00064/BIBTEX
78.    Pópulo H, Lopes JM, Soares P. The mTOR Signalling Pathway in Human Cancer. Int J Mol Sci. 2012; 13(2): 1886. doi:10.3390/IJMS13021886
79.    Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017; 168(6): 960. doi: 10.1016/J.CELL.2017.02.004
80.    Song X, Tan L, Wang M, et al. Myricetin: A review of the most recent research. Biomedicine and Pharmacotherapy. 2021; 134: 111017. doi: 10.1016/J.BIOPHA.2020.111017
81.    Schwartz SL, Ratner RE, Kim DD, et al. Effect of exenatide on 24-hour blood glucose profile compared with placebo in patients with type 2 diabetes: A randomized, double-blind, two-arm, parallel-group, placebo-controlled, 2-week study. Clin Ther. 2008; 30(5): 858-867. doi: 10.1016/J.CLINTHERA.2008.05.004
82.    Knickle A, Fernando W, Greenshields AL, Rupasinghe HPV, Hoskin DW. Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide. Food and Chemical Toxicology. 2018; 118: 154-167. doi:10.1016/J.FCT.2018.05.005
83.    Devi KP, Rajavel T, Habtemariam S, Nabavi SF, Nabavi SM. Molecular mechanisms underlying anticancer effects of myricetin. Life Sci. 2015; 142: 19-25. doi:10.1016/j.lfs.2015.10.004
84.    Tang NP, Zhou B, Wang B, Yu R Bin, Ma J. Flavonoids intake and risk of lung cancer: A meta-analysis. Jpn J Clin Oncol. 2009; 39(6): 352-359. doi:10.1093/JJCO/HYP028
85.    Xia W, Zheng B, Li T, Lian F, Lin Y, Liu R. Fabrication, characterization and evaluation of myricetin adsorption onto starch nanoparticles. Carbohydr Polym. 2020; 250. doi: 10.1016/j.carbpol.2020.116848
86.    Li J, Xiang H, Huang C, Lu J. Pharmacological Actions of Myricetin in the Nervous System: A Comprehensive Review of Preclinical Studies in Animals and Cell Models. Front Pharmacol. 2021; 12. doi:10.3389/FPHAR.2021.797298
87.    Ye C, Zhang C, Huang H, et al. The Natural Compound Myricetin Effectively Represses the Malignant Progression of Prostate Cancer by Inhibiting PIM1 and Disrupting the PIM1/CXCR4 Interaction. Cellular Physiology and Biochemistry. 2018; 48(3): 1230-1244. doi:10.1159/000492009,
88.    Kulchenko NG, Kostin AA, Chibisov SM, et al. Modern Principles of Early Diagnosis of Prostate Cancer. Res J Pharm Technol. 2017; 10(3): 696-698. doi:10.5958/0974-360X.2017.00130.5
89.    P. P, V.C. Y, Singh KK, Kala KS, L. AK, P.K. S. The Cytological Diagnosis of Prostate Cancer. Research Journal of Pharmacology and Pharmacodynamics. 2012;4(4). Accessed June 28, 2025. https://rjppd.org/AbstractView.aspx?PID=2012-4-4-25
90.    Yang W, Su J, Li M, et al. Myricetin Induces Autophagy and Cell Cycle Arrest of HCC by Inhibiting MARCH1-Regulated Stat3 and p38 MAPK Signaling Pathways. Front Pharmacol. 2021; 12. doi:10.3389/FPHAR.2021.709526
91.    Li M, Chen J, Yu X, et al. Myricetin suppresses the propagation of hepatocellular carcinoma via down-regulating expression of YAP. Cells. 2019; 8(4). doi:10.3390/CELLS8040358
92.    Zang W, Wang T, Wang Y, et al. Myricetin exerts anti-proliferative, anti-invasive, and pro-apoptotic effects on esophageal carcinoma EC9706 and KYSE30 cells via RSK2. Tumor Biology. 2014; 35(12): 12583-12592. doi:10.1007/S13277-014-2579-4
93.    Sun F, Zheng XY, Ye J, Wu TT, Wang JL, Chen W. Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr Cancer. 2012; 64(4): 599-606. doi:10.1080/01635581.2012.665564
94.    Sajedi N, Homayoun M, Mohammadi F, Soleimani M. Myricetin Exerts its Apoptotic Effects on MCF-7 Breast Cancer Cells through Evoking the BRCA1-GADD45 Pathway. Asian Pacific Journal of Cancer Prevention. 2020; 21(12): 3461-3468. doi:10.31557/APJCP.2020.21.12.3461
95.    Karale PA, Karale MA, Utikar MC. Advanced Molecular Targeted Therapy in Breast Cancer. Research Journal of Pharmacology and Pharmacodynamics. 2018; 10(1): 29-37. doi:10.5958/2321-5836.2018. 00006.X
96.    Bhagya SS, Shanmuga RP, Ezhilarasi R. Role of Nursing in Lymphoedema with Breast Cancer Patients. Asian Journal of Nursing Education and Research. 2015; 5(4): 542. doi:10.5958/2349-2996.2015.00111.1
97.    Srivastava S, Kumar A. Breast Cancer Survivorship among Indian Women: An Overview. Asian Journal of Nursing Education and Research. Published online August 1, 2022: 262-266. doi:10.52711/2349-2996.2022.00056
98.    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6): 394-424. doi:10.3322/CAAC.21492
99.    Li Q, Tan Q, Ma Y, Gu Z, Chen S. Myricetin Suppresses Ovarian Cancer In Vitro by Activating the p38/Sapla Signaling Pathway and Suppressing Intracellular Oxidative Stress. Front Oncol. 2022; 12. doi:10.3389/FONC.2022.903394
100.    Tippegowda SB. A Case Study on Ovarian Cancer-Palliative Perspective. Asian Journal of Nursing Education and Research. 2015; 5(3): 446. doi:10.5958/2349-2996.2015.00090.7
101.    Zheng AW, Chen YQ, Zhao LQ, Feng JG. Myricetin induces apoptosis and enhances chemosensitivity in ovarian cancer cells. Oncol Lett. 2017; 13(6): 4974. doi:10.3892/OL.2017.6031
102.    Han SH, Lee JH, Woo JS, et al. Myricetin induces apoptosis and autophagy in human gastric cancer cells through inhibition of the PI3K/Akt/mTOR pathway. Heliyon. 2022; 8(5). doi: 10.1016/J.HELIYON. 2022.E09309

Recomonded Articles:

Author(s): Purnendu Panda, Banamali Das, DS Sahu, SK Meher, BK Das, MM Rao, GChD Naga Lakshmi.

DOI: 10.5958/2321-5836.2015.00011.7         Access: Open Access Read More

Author(s): Syed Sagheer Ahmed, Chandra Prakash. K, Saba Tabassum, Noor Salma, Ahalya Devi. K H

DOI: 10.5958/2321-5836.2019.00003.X         Access: Open Access Read More

Author(s): Purnendu Panda, Banamali Das, DS Sahu, SK Meher, Das, GC Nanda.

DOI: Not Available         Access: Open Access Read More

Author(s): Gautam Kumar, Ravi Kumar, Harshit Rana

DOI: 10.52711/2321-5836.2023.00007         Access: Open Access Read More

Author(s): Mahesh Babasaheb Kolap, Pratiksha Kisan Omase, Abhijeet Vijay Dashwant, Rutuja Shrikant Namde

DOI: 10.52711/2321-5836.2021.00016         Access: Open Access Read More

Author(s): Syed Sulthan Ahamed S N, Shekshavali. T, Syed Shafeeq. R

DOI: 10.5958/2321-5836.2018.00015.0         Access: Open Access Read More

Author(s): Sudhanshu Kumar Meher, Purnendu Panda, Banmali Das, G. C. Bhuyan, Dr. K. K. Rath

DOI: 10.5958/2321-5836.2018.00023.X         Access: Open Access Read More

Author(s): Shilpa Maria, IJ Kuppast, JH Virupaksha, M Vanajakshi, K Prasad.

DOI: 10.5958/2321-5836.2015.00033.6         Access: Open Access Read More

Author(s): T. Shekshavali, S. Roshan

DOI: 10.5958/2321-5836.2016.00031.8         Access: Open Access Read More

Author(s): Sachin Aglawe, Amol Gayke, Kavita Sharma, Sonali Jadhav, Sanjivani Gore, Bhagyashri Pandit, Sonali Valate, Mayuri Wagh

DOI: 10.5958/2321-5836.2020.00003.8         Access: Open Access Read More

Author(s): Kishan K G, Shekshavali. T, Kuppast I.J, Kishan Kumar MA, Jeevanagouda Patil

DOI: 10.5958/2321-5836.2016.00030.6         Access: Open Access Read More

Author(s): VI Zalavadiya, VK Shah, DD Santani, MS Patel, JM Fosi, AK Chaudhary.

DOI: Not Available         Access: Open Access Read More

Author(s): M. Vanajakshi, J.H. Virupaksha, Shilpa Maria

DOI: 10.5958/2321-5836.2016.00033.1         Access: Open Access Read More

Author(s): S. D. Kadam, S. A. Chavhan, S. A. Shinde, P. N. Sapkal

DOI: 10.5958/2321-5836.2018.00032.0         Access: Open Access Read More

Author(s): Madhavi Sahu, S. Prakash Rao

DOI: 10.5958/2321-5836.2018.00031.9         Access: Open Access Read More

Author(s): Ganesh G. Dhakad, Kaveri P. Tambe, Sangita P. Shirsat, Neha R. Jaiswal

DOI: 10.52711/2321-5836.2022.00031         Access: Open Access Read More

Author(s): Sanjib Kumar Das, Anuradha Das, Banamali Das, Purnendu Panda, G. C. Bhuyan, Bipin Bihari Khuntia

DOI: 10.5958/2321-5836.2017.00036.2         Access: Open Access Read More

Author(s): Jeevanagouda Patil, Kuppast I.J, Kishan Kumar M A, Kishan K G

DOI: 10.5958/2321-5836.2016.00032.X         Access: Open Access Read More

Author(s): Ganesh G. Dhakad, Sayali V. Ganjiwale, Shweta M. Nawghare, Abhijit V. Shrirao, N.I. Kochar, A. V. Chandewar

DOI: 10.52711/2321-5836.2023.00014         Access: Open Access Read More

Author(s): Manasa K.S, Kuppast I.J, Kishan Kumar M.A , Akshara K

DOI: 10.5958/2321-5836.2016.00034.3         Access: Open Access Read More

Research Journal of Pharmacology and Pharmacodynamics (RJPPD) is an international, peer-reviewed journal....... Read more >>>

RNI: Not Available                     
DOI: 10.5958 2321-5836 

Journal Policies & Information




Recent Articles




Tags