Author(s):
Shaik Rubina, Zeenath Banu
Email(s):
zeenathcology@gmail.com
DOI:
10.52711/2321-5836.2026.00006
Address:
Shaik Rubina1, Zeenath Banu2*
1,2Department of Pharmacology, RBVRR Women's College of Pharmacy, Affiliated to Osmania University, Barkatpura, Hyderabad, Telangana - 500027.
*Corresponding Author
Published In:
Volume - 18,
Issue - 1,
Year - 2026
ABSTRACT:
Obesity is a multifactorial, chronic disease characterized by abnormal or excessive fat accumulation arising from prolonged energy imbalance. It is strongly associated with an increased risk of metabolic, cardiovascular, and neoplastic disorders, thereby constituting a major global health burden. The pathogenesis of obesity involves complex mechanisms, including adipocyte hypertrophy and hyperplasia, dysregulated lipid metabolism, and chronic low-grade inflammation, further influenced by genetic predisposition, behavioral patterns, and environmental factors. Epidemiological data reveal alarming prevalence trends, with more than one third of the global population considered as overweight or obese. Conventional management strategies such as lifestyle modification, pharmacotherapy, and bariatric surgery are limited by suboptimal efficacy and poor long-term sustainability, highlighting the urgent need for more effective therapeutic approaches. This review emphasizes recent advances in the cellular and molecular understanding of obesity, with a focus on adipogenesis and adipose tissue dysfunction as critical therapeutic targets. Particular attention is directed toward the complementary use of in vitro, in silico, and in vivo models in antiobesity drug discovery. In vitro assays, including pancreatic lipase inhibition and adipocyte differentiation studies, provide mechanistic insights into adipose biology. In silico approaches, such as molecular docking and molecular dynamics simulations, enable the prediction of molecular targets and optimization of candidate compounds. In vivo rodent models, which recapitulate human metabolic disturbances, remain indispensable for evaluating preclinical efficacy and safety. Emerging evidence also underscores the potential of natural bioactive compounds as safer, multi-targeted therapeutic interventions. Future perspectives advocate the integration of advanced 3D tissue models, computational systems biology, and personalized medicine to improve translational relevance, reduce reliance on animal experimentation, and accelerate the development of next generation antiobesity therapeutics.
Cite this article:
Shaik Rubina, Zeenath Banu. Comprehensive Insights into Obesity: Etiology, Risk Factors, Pathophysiology and Interventions through In vitro, In vivo and In silico Models. Research Journal of Pharmacology and Pharmacodynamics. 2026;18(1):46-8. doi: 10.52711/2321-5836.2026.00006
Cite(Electronic):
Shaik Rubina, Zeenath Banu. Comprehensive Insights into Obesity: Etiology, Risk Factors, Pathophysiology and Interventions through In vitro, In vivo and In silico Models. Research Journal of Pharmacology and Pharmacodynamics. 2026;18(1):46-8. doi: 10.52711/2321-5836.2026.00006 Available on: https://rjppd.org/AbstractView.aspx?PID=2026-18-1-6
REFERENCES:
1. Atesh K, Sivasubramanian R, Jothi G, Brindha P. Evaluation of antiobesity potential of aqueous extract of Achyranthes aspera Linn. in high fat diet induced obese rats. Clin Phytosci. 2020; 6:69. https://doi.org/10.1186/s40816-020-00217-5.
2. Chandrakala M. Lifestyle modification to combat adolescent obesity. Asian J Nurs Educ Res. 2011;1(3):82-4.
3. Mendagudli VG, Sarawad SS. Obesity and its impact on health. Int J Nurs Educ Res. 2021;9(4):485-7. https://doi.org/10.52711/2454-2660.2021.00113.
4. Manjunatha DM. Obesity and growing health risks-a review. Asian J Nurs Educ Res. 2022; 12(3): 350-2. https://doi.org/10.52711/2349-2996.2022.00073.
5. Lin X, Li H. Obesity: epidemiology, pathophysiology, and therapeutics. Front Endocrinol (Lausanne). 2021; 12:706978. https://doi.org/10.3389/fendo.2021.706978
6. Jarali AB, Radhakrishnan G. Stress, obesity and selected health problems among professionals. Asian J Nurs Educ Res. 2013; 3(3):154-63.
7. Panchal A, Khantal A. A review on pharmacological and non-pharmacological therapy for the treatment of obesity with cardiovascular diseases. Res J Pharmacology Pharmacodynamics. 2024;16(2):114-8. https://doi.org/10.52711/2321-5836.2024.00020
8. Haslam D. Obesity: a medical history. Obes Rev. 2007; 8(1): 31-6. https://doi.org/10.1111/j.1467-789X.2007.00314.x.
9. Prentice AM. The double burden of malnutrition in countries passing through the economic transition. Ann Nutr Metab. 2018; 72(3): 47-54. https://doi.org/10.1159/000487383.
10. Jakab J, Miskic B, Miksic S, Juranic B, Cosic V, Schwarz D, Vcev A. Adipogenesis as a potential antiobesity target: A review of pharmacological treatment and natural products. Diabetes Metab Syndr Obes. 2021; 14:67-83. https://doi.org/10.2147/DMSO.S281186.
11. Esteghamati A, Mazaheri T, Vahidi Rad M, Noshad S. Complementary and Alternative Medicine for the Treatment of Obesity: A Critical Review. Int J Endocrinol Metab. 2015; 13(2): e19678. https://doi.org/10.5812/ijem.19678.
12. Menon A, Apthadevi, Roshni PR. Nutritional deficiencies after bariatric surgery. Res J Pharmacology Pharmacodynamics. 2019; 11(3): 120-3. https://doi.org/10.5958/2321-5836.2019.00021.1
13. Charo NL, Rodríguez Ceschan MI, Galigniana NM, Toneatto J, Piwien-Pilipuk G. Organization of nuclear architecture during adipocyte differentiation. Nucleus. 2016; 7(3): 249-269. https://doi.org/10.1080/19491034.2016.1197442
14. Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 2016; 23(7): 1128-39. https://doi.org/10.1038/cdd.2015.168
15. Pamplona JH, Zoehler B, Shigunov P, Barisón MJ, Severo VR, Erich NM, Ribeiro AL, Horinouchi CDS, Suzukawa AA, Robert AW, Abud APR, Aguiar AM. Alternative Methods as Tools for Obesity Research: In Vitro and In Silico Approaches. Life (Basel). 2022 Dec 30;13(1):108. https://doi.org/10.3390/life13010108.
16. Panchal NB, Vaghela VM. Advancements in obesity: unravelling pathophysiology, treatment strategies, and innovative approaches. Biosci Biotechnol Res Asia. 2025; 22(1): 37-53. https://doi.org/10.13005/bbra/3339.
17. Bhargava V. Obesity in India-The omnipresent influence. Res J Pharmacology Pharmacodynamics. 2013; 5(4): 220-6.
18. Leelavathi A, Mathew B. Pediatric obesity: nursing strategies for prevention. Asian J Nurs Educ Res. 2024; 14(2): 129-32. https://doi.org/10.52711/2349-2996.2024.00025.
19. Elebeedy D, Ghanem A, Saleh A, Ibrahim MH, Kamaly OA, Abourehab MAS, et al. In Vivo and In Silico Investigation of the Antiobesity Effects of Lactiplantibacillus plantarum Combined with Chia Seeds, Green Tea, and Chitosan in Alleviating Hyperlipidemia and Inflammation. Int J Mol Sci. 2022; 23(20): 12200. https://doi.org/10.3390/ijms232012200.
20. Jiang Y, Xu T, Zhang Y, Song J. Obesity: Epidemiology, pathophysiology, and therapeutics. Front Endocrinol (Lausanne). 2022; 13: 1025459. https://doi.org/10.3389/fendo.2022.1025459.
21. Christensen R, Henriksen M, Leeds AR, Gudbergsen H, Christensen P, Sørensen TJ, Bartels EM, Riecke BF, Aaboe J, Frederiksen R, Boesen M, Lohmander LS, Astrup A, Bliddal H. Effect of weight maintenance on symptoms of knee osteoarthritis in obese patients: a twelve-month randomized controlled trial. Arthritis Care Res (Hoboken). 2015; 67(5): 640-50. https://doi.org/10.1002/acr.22504.
22. Chatterjee A, Gerdes MW, Martinez SG. Identification of Risk Factors Associated with Obesity and Overweight-A Machine Learning Overview. Sensors (Basel). 2020; 20(9): 2734. https://doi.org/10.3390/s20092734.
23. Fletcher J. What are some of the risk factors for obesity? Medical. News. Today. 2023; 26.
24. Kausar H, Ubaid-Ur-Rahaman M. An assessment of obesity amongst working women. Res J Pharmacology Pharmacodynamics. 2013;5(2):134-135.
25. Ruban A, Stoenchev K, Ashrafian H, Teare J. Current treatments for obesity. Clin Med (Lond). 2019 May; 19(3): 205-212. https://doi.org/10.7861/clinmedicine.19-3-205.
26. Peri K, Eisenberg M. Review on obesity management: bariatric surgery. BMJ Public Health. 2024; 2: e000245. https://doi.org/10.1136/bmjph-2023-000245.
27. Medeiros WF, Gomes AFT, Aguiar AJFC, de Queiroz JLC, Bezerra IWL, da Silva-Maia JK, Piuvezam G, Morais AHdA. Antiobesity Therapeutic Targets Studied In Silico and In Vivo: A Systematic Review. Int J Mol Sci. 2024; 25(4699). https://doi.org/10.3390/ijms25094699.
28. Mia MAR, Ahmed QU, Ferdosh S, Helaluddin ABM, Azmi SNH, Al-Otaibi FA, Parveen H, Mukhtar S, Ahmed MZ, Sarker MZI. Antiobesity and antihyperlipidemic effects of Phaleria macrocarpa fruit liquid CO₂ extract: in vitro, in silico and in vivo approaches. J King Saud Univ Sci. 2023; 35: 102865. https://doi.org/10.1016/j.jksus.2023.102865.
29. Yan X-T, Zhang W, Zhang Y, Zhang Z, Chen D, Wang W, Ma W, Qu H, Qian J-Y, Gu R. In vitro antiobesity effect of Shenheling extract (SHLE) fermented with Lactobacillus fermentum grx08. Foods. 2022; 11:1221. https://doi.org/10.3390/foods11091221.
30. Janderova L, McNeil M, Murrell AN, Mynatt RL, Smith SR. Human mesenchymal stem cells as an in vitro model for human adipogenesis. Obes Res. 2003; 11(1): 65-74. https://doi.org/10.1038/oby.2003.11.
31. Dufau J, Shen JX, Couchet M, De Castro Barbosa T, Mejhert N, Massier L, Griseti E, Mouisel E, Amri EZ, Lauschke VM, Ryden M, Langin D. In vitro and ex vivo models of adipocytes. Am J Physiol Cell Physiol. 2021; 320(6): C822-C841. https://doi.org/10.1152/ajpcell.00519.2020.
32. Contessi Negrini N, Pellegrinelli V, Salem V, Celiz A, Vidal-Puig A. Breaking barriers in obesity research: 3D models of dysfunctional adipose tissue. Trends Biotechnol. 2025;43(5):1079-1091. https://doi.org/10.1016/j.tibtech.2024.09.017.
33. Avelino TM, Provencio MGA, Peroni LA, Domingues RR, Torres FR, de Oliveira PSL, Paes Leme AF, Figueira ACM. Improving obesity research: Unveiling metabolic pathways through a 3D in vitro model of adipocytes using 3T3-L1 cells. PLoS One. 2024: 31;19(5):e0303612. https://doi.org/10.1371/journal.pone.0303612.
34. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014 Aug; 32(8): 773-785. https://doi.org/10.1038/nbt.2958.
35. Mopuri R, Ganjayi M, Banavathy KS, Parim BN, Meriga B. Evaluation of anti-obesity activities of ethanolic extract of Terminalia paniculata bark on high fat diet induced obese rats. BMC Complement Altern Med. 2015; 15:76. https://doi.org/10.1186/s12906-015-0598-3.
36. Arika WM, Kibiti CM, Njagi JM, Ngugi MP. Anti-obesity effects of dichloromethane leaf extract of Gnidia glauca in high fat diet induced obese rats. Heliyon. 2019; s5: e02800. https://doi.org/10.1016/j.heliyon.2019.e02800.
37. Rusdiana R, Widyawati T, Sari DK, Widjaja SS, Putra DP. The antiobesity properties of Anredera cordifolia leaf extract in rats fed a high fat diet through inhibition of adipogenesis. J Adv Vet Anim Res. 2023; 10(4): 809-816. https://doi.org/10.5455/javar.2023.j737.
38. Shama AT, Shova LM, Bristy AT, Emran T, Shabnam S, Shill MC, Bepari AK, Reza HM. Antiobesity effects and underlying molecular mechanisms of the ethanolic extract of figs from Ficus hispida using high fat fed Wistar rats. Heliyon. 2024; 10: e35392. https://doi.org/10.1016/j.heliyon.2024.e35392.
39. Momoh BJ, Okere SO, Anyanwu GO. The antiobesity effect of Allium cepa L. leaves on high fat diet induced obesity in male Wistar rats. Clin Complement Med Pharmacol. 2022; 2: 100035. https://doi.org/10.1016/j.ccmp.2022.100035.
40. Abbas MA, Boby N, Lee EB, Hong JH, Park SC. Antiobesity effects of Ecklonia cava extract in high fat diet induced obese rats. Antioxidants (Basel). 2022; 11(2): 310. https://doi.org/10.3390/antiox11020310.
41. Manjula B, Hunasagi R, Gowda SKP. Antiobesity activity of ethanolic extract of Moringa oleifera seeds in experimental animals. Res J Pharmacodyn Pharmacology. 2011;3(6):318-328.
42. Prasetyo A, Batubara WRP, Indarto D, Susilawati TN. In silico investigation and in vivo effect of Berastagi orange (Citrus sinensis) peel extract on male obese rats. Pharmacia. 2024; 71:1-10. https://doi.org/10.3897/pharmacia.71.e139050.
43. Zashumo KJ, Mathivanan V, Grace H, Leelavathi D. In silico Toxicity Prediction on Novel Antiobesity Drug Using Cheminformatics Approaches. Int J Pharm Investig. 2022; 12(4): 418-422. https://doi.org/10.5530/ijpi.2022.4.72.
44. Mondal I, Halder AK, Pattanayak N, Mandal SK, Cordeiro MNDS. Shaping the Future of Obesity Treatment: In Silico Multi-Modeling of IP6K1 Inhibitors for Obesity and Metabolic Dysfunction. Pharmaceuticals. 2024; 17(263). https://doi.org/10.3390/ph17020263.
45. Alafnan A, Chettupalli AK, Unnisa A, Hussain T, Anwar S, Alkhojali WM, Khalifa NE, Osman MED, Younes KM, Abouzied AS, Anupama B, Lakshmi KNVC. In silico elucidation of plausible antiobesity activity by Withaferin-A compound targeting alpha-amylase. Eur Rev Med Pharmacol Sci. 2023 Apr; 27(7): 3150-8. https://doi.org/10.26355/eurrev20230431949
46. Jeyakumar P, Jasmin Suriya AR, Yolin Angela PASR, Nagasundari SM, Natarajan PP, Murugan K. Diet induced animal model antiobesity, phytochemical profiling, and in silico analysis of culinary plant gokhru (Pedalium murex L.) mucilage. J Biomol Struct Dyn. 2024; 42(23): 12954-69. https://doi.org/10.1080/07391102.2023.2274516.