Author(s): C. Senthil Kumar, Neelaveni Thangavel, D. Benito Johnson, Madhuranthagan M, S Rahul Raj, A. Roshni, R. Abimanyu

Email(s): drcsenthilkumar@rvsgroup.com

DOI: 10.52711/2321-5836.2026.00012   

Address: C. Senthil Kumar1*, Neelaveni Thangavel2, D. Benito Johnson1, Madhuranthagan M1, S Rahul Raj, A. Roshni, R. Abimanyu
1INTI International University (Research Scholar), Malaysia, Department of Pharmacology, RVS College of Pharmaceutical Sciences, Sulur, Coimbatore, Tamil Nadu, India.
2Department of Pharmaceutical Chemistry, RVS College of Pharmaceutical Sciences, Sulur, Coimbatore, Tamil Nadu, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 1,     Year - 2026


ABSTRACT:
Un control diabetes mellitus endup with microvascular complication Diabetic Neuropathy, Retinopathy and Nephropathy, among all three-complication diabetic nephropathy is a leading cause of end-stage renal disease worldwide. Current treatment approaches—such as glycemic control, RAAS inhibition, SGLT2 inhibitors, and GLP-1 receptor agonists—offer limited effectiveness and are frequently linked to adverse side effects. This limitation the urgent added by novel, multi-targeted approaches. Bioflavonoids, which are naturally occurring polyphenolic compounds, show potential as nephroprotective agents as of their strong antioxidant, anti-inflammatory and antifibrotic properties. Cassia auriculata, a medicinal plant widely used in traditional medicine, it contains bioflavonoids such as quercetin, kaempferol, luteolin, apigenin, and isorhamnetin. These compounds modulate oxidative stress, inhibit AGE–RAGE and NF-?B signaling, suppress pro-inflammatory cytokines, and improve insulin sensitivity, thereby protecting against glomerular hypertrophy, mesangial expansion, and proteinuria. Preclinical research shows that these flavonoids modulate various molecular pathways—such as MAPK, Nrf2/HO-1, STAT3, and the NLRP3 inflammasome—to reduce kidney damage in diabetic models. However, their poor bioavailability and rapid metabolism limit clinical application. Drug delivery systems based on nanotechnology offer a novel approach to improve solubility, stability, and overall therapeutic effectiveness. So far, there have been no reports of nanoformulations containing dual phytoflavonoids for the treatment of diabetic nephropathy (DN). Based on the insights from this review, we propose the formulation and evaluation of dual bioflavonoid-loaded nanocarriers as a novel treatment strategy, aiming to synergistically regulate multiple pathogenic mechanisms. Further pharmacokinetic studies, molecular investigations, and clinical validation are essential to translate these promising natural agents into effective nephroprotective therapies.


Cite this article:
C. Senthil Kumar, Neelaveni Thangavel, D. Benito Johnson, Madhuranthagan M, S Rahul Raj, A. Roshni, R. Abimanyu. Exploring the Potential of Nephroprotective effect of Flavonoids present in Cassia auriculata A Review. Research Journal of Pharmacology and Pharmacodynamics. 2026;18(1):94-2. doi: 10.52711/2321-5836.2026.00012

Cite(Electronic):
C. Senthil Kumar, Neelaveni Thangavel, D. Benito Johnson, Madhuranthagan M, S Rahul Raj, A. Roshni, R. Abimanyu. Exploring the Potential of Nephroprotective effect of Flavonoids present in Cassia auriculata A Review. Research Journal of Pharmacology and Pharmacodynamics. 2026;18(1):94-2. doi: 10.52711/2321-5836.2026.00012   Available on: https://rjppd.org/AbstractView.aspx?PID=2026-18-1-12


REFERENCE:
1.    Craig ME, Hattersley A, Donaghue KC. Definition, epidemiology and classification of diabetes in children and adolescents. Pediatr diabetes. 2009 Sep 1;10(Suppl 12):3-12
2.    Caro-Ordieres T, Marín-Royo G, Opazo-Ríos L, Jiménez-Castilla L, Moreno JA, Gómez-Guerrero C, Egido J. The coming age of flavonoids in the treatment of diabetic complications. Journal of clinical medicine. 2020 Jan 27;9(2):346.
3.    Faselis C, Katsimardou A, Imprialos K, Deligkaris P, Kallistratos M, Dimitriadis K. Microvascular complications of type 2 diabetes mellitus. Current vascular pharmacology. 2020 Mar 1;18(2):117-24
4.    Selby NM, Taal MW. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes, Obesity and Metabolism. 2020 Apr; 22:3-15
5.    Zimmet P. Globalization, coca‐colonization and the chronic disease epidemic: can the Doomsday scenario be averted? Journal of internal medicine. 2001 Feb;249(S741):17-26.
6.    Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabetic medicine. 1997 Dec;14(S5): S7-85
7.    King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes care. 1998 Sep 1;21(9):1414-31.
8.    Shi J, Wu J, Zhou X, Zeng L, Huang X, Wang W. Kaempferol: A Dietary Flavonoid with Potential Protective Effects Against Kidney Diseases. Molecular Nutrition & Food Research. 2025 Aug 20: e70211
9.    Giglio RV, Patti AM, Rizvi AA, Stoian AP, Ciaccio M, Papanas N, Janez A, Sonmez A, Banach M, Sahebkar A, Rizzo M. Advances in the pharmacological management of diabetic nephropathy: a 2022 international update. Biomedicines. 2023 Jan 20;11(2):291.
10.    Kawanami D, Matoba K, Takeda Y, Nagai Y, Akamine T, Yokota T, Sango K, Utsunomiya K. SGLT2 inhibitors as a therapeutic option for diabetic nephropathy. International journal of molecular sciences. 2017 May 18;18(5):1083.
11.    Papademetriou V, Alataki S, Stavropoulos K, Papadopoulos C, Bakogiannis K, Tsioufis K. Pharmacological management of diabetic nephropathy. Current Vascular Pharmacology. 2020 Mar 1;18(2):139-47.
12.    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. New England Journal of Medicine. 1993 Nov 11;329(20):1456-62.
13.    Forbes JM, Cooper ME, Oldfield MD, Thomas MC. Role of advanced glycation end products in diabetic nephropathy. Journal of the American Society of Nephrology. 2003 Aug 1;14(suppl_3): S254-8.
14.    Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. The Korean journal of physiology & pharmacology: official journal of the Korean Physiological Society and the Korean Society of Pharmacology. 2014 Feb 13;18(1):1.
15.    Fonseca-Correa JI, Correa-Rotter R. Sodium-glucose cotransporter 2 inhibitors mechanisms of action: a review. Frontiers in Medicine. 2021 Dec 20; 8:777861.
16.    Greco EV, Russo G, Giandalia A, Viazzi F, Pontremoli R, De Cosmo S. GLP-1 receptor agonists and kidney protection. Medicina. 2019 May 31;55(6):233.
17.    Hakim FA, Pflueger A. Role of oxidative stress in diabetic kidney disease. Medical science monitor: international medical journal of experimental and clinical research. 2010 Feb 1;16(2):RA37-48.
18.    Lindblom R, Higgins G, Coughlan M, de Haan JB. Targeting mitochondria and reactive oxygen species-driven pathogenesis in diabetic nephropathy. The review of diabetic studies: RDS. 2015 Aug 10;12(1-2):134.
19.    Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocrine reviews. 2002 Oct 1;23(5):599-622.
20.    Barros J, da Silva Santos R, da Silva Reis AA. Implication of the MAPK signalling pathway in the pathogenesis of diabetic nephropathy. Diabetes. 2019 Nov;7(1):107-14.
21.    Rane MJ, Song YE, Jin S, Barati MT, Wu R, Kausar H, Tan Y, Wang Y, Zhou G, Klein JB, Li X. Interplay between Akt and p38 MAPK pathways in the regulation of renal tubular cell apoptosis associated with diabetic nephropathy. American Journal of Physiology-Renal Physiology. 2010 Jan;298(1): F49-61.
22.    Toyoda M, Suzuki D, Honma M, Uehara G, Sakai T, Umezono T, Sakai H. High expression of PKC-MAPK pathway mRNAs correlates with glomerular lesions in human diabetic nephropathy. Kidney international. 2004 Sep 1;66(3):1107-14.
23.    [Fonseca-Correa JI, Correa-Rotter R. Sodium-glucose cotransporter 2 inhibitors mechanisms of action: a review. Frontiers in Medicine. 2021 Dec 20; 8:777861.    
24.    Hsia DS, Grove O, Cefalu WT. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Current Opinion in Endocrinology, Diabetes and Obesity. 2017 Feb 1;24(1):73-9.
25.    Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016 Sep 6;134(10):752-72
26.    Fujita H, Morii T, Fujishima H, Sato T, Shimizu T, Hosoba M, Tsukiyama K, Narita T, Takahashi T, Drucker DJ, Seino Y. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney international. 2014 Mar 1;85(3):579-89.  
27.    Granata A, Maccarrone R, Anzaldi M, Leonardi G, Pesce F, Amico F, Gesualdo L, Corrao S. GLP-1 receptor agonists and renal outcomes in patients with diabetes mellitus type 2 and diabetic kidney disease: state of the art. Clinical Kidney Journal. 2022 Sep;15(9):1657-65.  
28.    Skov J. Effects of GLP-1 in the kidney. Reviews in Endocrine and Metabolic Disorders. 2014 Sep;15(3):197-207
29.    Górriz JL, Soler MJ, Navarro-González JF, García-Carro C, Puchades MJ, D’Marco L, Martínez Castelao A, Fernández-Fernández B, Ortiz A, Górriz-Zambrano C, Navarro-Pérez J. GLP-1 receptor agonists and diabetic kidney disease: a call of attention to nephrologists. Journal of clinical medicine. 2020 Mar 30;9(4):947.
30.    Shi S, Chen X, Yu W, Ke X, Ma T. Protective effect of GLP-1 analog liraglutide on podocytes in mice with diabetic nephropathy. Endocrine Connections. 2023 Oct 1;12(10).
31.    Cushnie TT, Lamb AJ. Antimicrobial activity of flavonoids. International journal of antimicrobial agents. 2005 Nov 1;26(5):343-56.
32.    Kawser Hossain M, Abdal Dayem A, Han J, Yin Y, Kim K, Kumar Saha S, Yang GM, Choi HY, Cho SG. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. International journal of molecular sciences. 2016 Apr 15;17(4):569.
33.    3Salma B, Janhavi P, Muthaiah S, Veeresh P, Santhepete Nanjundaiah M, Divyashree S, Serva Peddha M. Ameliorative efficacy of the Cassia auriculata root against high-fat-diet+ STZ-induced type-2 diabetes in C57BL/6 mice. ACS omega. 2020 Dec 18;6(1):492-504.
34.    Pandey MM, Rastogi S, Rawat AK. Indian traditional ayurvedic system of medicine and nutritional supplementation. Evidence‐Based Complementary and Alternative Medicine. 2013;2013(1):376327
35.    Pari L, Latha M. Effect of Cassia auriculata flowers on blood sugar levels, serum and tissue lipids in streptozotocin diabetic rats. Singapore Med J. 2002 Dec 1;43(12):617-21.
36.    Gupta S, Sharma SB, Bansal SK, Prabhu KM. Antihyperglycemic and hypolipidemic activity of aqueous extract of Cassia auriculata L. leaves in experimental diabetes. Journal of Ethnopharmacology. 2009 Jun 25;123(3):499-503.
37.    Latha M, Pari L. Antihyperglycaemic effect of Cassia auriculata in experimental diabetes and its effects on key metabolic enzymes involved in carbohydrate metabolism. Clinical and experimental pharmacology and physiology. 2003 Jan;30(1‐2):38-43.
38.    Gomez-Zorita S, Lasa A, Abendaño N, Fernandez-Quintela A, Mosqueda-Solís A, Garcia-Sobreviela MP, Arbonés-Mainar JM, Portillo MP. Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes. Journal of translational medicine. 2017 Nov 21;15(1):237.
39.    Luo W, Chen X, Ye L, Chen X, Jia W, Zhao Y, Samorodov AV, Zhang Y, Hu X, Zhuang F, Qian J. Kaempferol attenuates streptozotocin-induced diabetic nephropathy by downregulating TRAF6 expression: The role of TRAF6 in diabetic nephropathy. Journal of Ethnopharmacology. 2021 Mar 25; 268:113553.
40.    Luo W, Chen X, Ye L, Chen X, Jia W, Zhao Y, Samorodov AV, Zhang Y, Hu X, Zhuang F, Qian J. Kaempferol attenuates streptozotocin-induced diabetic nephropathy by downregulating TRAF6 expression: The role of TRAF6 in diabetic nephropathy. Journal of Ethnopharmacology. 2021 Mar 25; 268:113553.
41.    Hu ZQ, Ding HM, Zhou L, Du YQ, Ye M, Shen AL, Yin G. Study on The Mechanism of Kaempferol Against Diabetic Nephropathy Via Nlrp3/Caspase-1 Signaling Pathway. Acta Poloniae Pharmaceutica. 2024 May 1;81(3).
42.    Alshehri AS. Kaempferol attenuates diabetic nephropathy in streptozotocin-induced diabetic rats by a hypoglycaemic effect and concomitant activation of the Nrf-2/Ho-1/antioxidants axis. Archives of physiology and biochemistry. 2023 Jul 4;129(4):984-97.
43.    Sheng H, Zhang D, Zhang J, Zhang Y, Lu Z, Mao W, Liu X, Zhang L. Kaempferol attenuated diabetic nephropathy by reducing apoptosis and promoting autophagy through AMPK/mTOR pathways. Frontiers in Medicine. 2022 Nov 30; 9:986825.
44.    Sharma D, Gondaliya P, Tiwari V, Gorain M, Kalia K. Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rho-kinase mediated inflammatory signalling. Biomed Pharmacother. 2019; 109:1610-1619. .2018.10.195.
45.    Sharma D, Tekade RK, Kalia K. Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: an in vitro and in vivo study in diabetic nephropathy mice model. Phytomedicine. 2020 Sep 1; 76:153235.45
46.    Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M. Therapeutic potential of quercetin: new insights and perspectives for human health. ACS omega. 2020 May 14;5(20):11849-72.
47.    Feng Q, Yang Y, Qiao Y, Zheng Y, Yu X, Liu F, Wang H, Zheng B, Pan S, Ren K, Liu D. Quercetin ameliorates diabetic kidney injury by inhibiting ferroptosis via activating Nrf2/HO-1 signaling pathway. The American Journal of Chinese Medicine. 2023 Apr 10;51(04):997-1018.
48.    Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules. 2019 Mar 21;24(6):1123.
49.    Elbe H, Vardi Nİ, Esrefoglu MU, Ates B, Yologlu S, Taskapan C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Human & experimental toxicology. 2015 Jan;34(1):100-13.
50.    Iskender H, Dokumacioglu E, Sen TM, Ince I, Kanbay Y, Saral S. The effect of hesperidin and quercetin on oxidative stress, NF-κB and SIRT1 levels in a STZ-induced experimental diabetes model. Biomedicine & Pharmacotherapy. 2017 Jun 1; 90:500-8
51.    Du L, Li C, Qian X, Chen Y, Wang L, Yang H, Li X, Li Y, Yin X, Lu Q. Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through the Hippo pathway. Pharmacol Res. 2019; 146:104320. doi: 10.1016/j.phrs.2019.104320.
52.    Gomes IBS, Porto ML, Santos MCLFS, Campagnaro BP, Pereira TMC, Meyrelles SS, Vasquez EC. Renoprotective, anti-oxidative and anti-apoptotic effects of oral low-dose quercetin in the C57BL/6J model of diabetic nephropathy. Lipids Health Dis. 2014; 13:184. doi:10.1186/1476-511X-13-184.
53.    Tang L, Li K, Zhang Y, Li H, Li A, Xu Y, et al. Quercetin liposomes ameliorate streptozotocin-induced diabetic nephropathy in diabetic rats. Sci Rep. 2020; 10:2440. doi:10.1038/s41598-020-59411-7.
54.    Wang C, Pan Y, Zhang QY, Wang FM, Kong LD. Quercetin and Allopurinol Ameliorate Kidney Injury in STZ-Treated Rats with Regulation of Renal NLRP3 Inflammasome Activation and Lipid Accumulation. PLoS ONE. 2012;7(6):e38285. doi: 10.1371/journal.pone.0038285
55.    Tong F, Liu S, Yan B, Li X, Ruan S, Yang S. Quercetin nanoparticle complex attenuated diabetic nephropathy via regulating the expression level of ICAM-1 on endothelium. International Journal of Nanomedicine. 2017 Oct 24:7799-813.
56.    Jang S, Kelley KW, Johnson RW. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proceedings of the National Academy of Sciences. 2008 May 27;105(21):7534-9.
57.    Hu Q, Qu C, Xiao X, Zhang W, Jiang Y, Wu Z, Song D, Peng X, Ma X, Zhao Y. Flavonoids on diabetic nephropathy: advances and therapeutic opportunities. Chinese medicine. 2021 Aug 7;16(1):74.
58.    Xiong C, Wu Q, Fang M, Li H, Chen B, Chi T. Protective effects of luteolin on nephrotoxicity induced by long-term hyperglycaemia in rats. Journal of International Medical Research. 2020 Apr;48(4):0300060520903642.
59.    Zhang M, He L, Liu J, Zhou L. Luteolin attenuates diabetic nephropathy through suppressing inflammatory response and oxidative stress by inhibiting STAT3 pathway. Experimental and Clinical Endocrinology & Diabetes. 2021 Oct;129(10):729-39.
60.    Yu Q, Zhang M, Qian L, Wen D, Wu G. Luteolin attenuates high glucose-induced podocyte injury via suppressing NLRP3 inflammasome pathway. Life Sciences. 2019 May 15; 225:1-7.
61.    Wang GG, Lu XH, Li W, Zhao X, Zhang C. Protective effects of luteolin on diabetic nephropathy in STZ‐induced diabetic rats. Evidence‐Based Complementary and Alternative Medicine. 2011;2011(1):323171
62.    Khaled R. Biological activities of isorhamnetin: A review. Plantae Scientia. 2020 Sep 15;3(5):78-81.
63.    Li J, Yuan H, Zhao Z, Li L, Li X, Zhu L, Wang X, Sun P, Xiao Y. The mitigative effect of isorhamnetin against type 2 diabetes via gut microbiota regulation in mice. Frontiers in nutrition. 2022 Dec 22; 9:1070908.
64.    Qiu S, Sun G, Zhang Y, Li X, Wang R. Involvement of the NF-κB signaling pathway in the renoprotective effects of isorhamnetin in a type 2 diabetic rat model. Biomedical reports. 2016 May 1;4(5):628-34.   
65.    Matboli M, Saad M, Hasanin AH, Saleh LA, Baher W, Bekhet MM, Eissa S. New insight into the role of isorhamnetin as a regulator of insulin signaling pathway in type 2 diabetes mellitus rat model: Molecular and computational approach. Biomedicine & Pharmacotherapy. 2021 Mar 1; 135:111176. 
66.    Jamali-Raeufy N, Baluchnejadmojarad T, Roghani M. Isorhamnetin exerts neuroprotective effects in STZ-induced diabetic rats via attenuation of oxidative stress, inflammation and apoptosis. Journal of Chemical Neuroanatomy. 2019 Dec 1; 102:101709.                 
67.    Salehi B, Venditti A, Sharifi-Rad M, Kręgiel D, Sharifi-Rad J, Durazzo A, Lucarini M, Santini A, Souto EB, Novellino E, Antolak H. The therapeutic potential of apigenin. International journal of molecular sciences. 2019 Mar 15;20(6):1305.
68.    Ali F, Rahul, Naz F, Jyoti S, Siddique YH. Health functionality of apigenin: A review. International Journal of Food Properties. 2017 Jun 3;20(6):1197-238.
69.    Hou Y, Zhang Y, Lin S, Yu Y, Yang L, Li L, Wang W. Protective mechanism of apigenin in diabetic nephropathy is related to its regulation of miR-423-5P-USF2 axis. American Journal of Translational Research. 2021 Apr 15;13(4):2006. 
70.    Barky A, Ezz A, Mohammed T. The Potential role of apigenin in diabetes mellitus. Int. J. Clin. Case Rep. Rev. 2020;3(1):32.
71.    Aldayel TS. Apigenin attenuates high-fat diet-induced nephropathy in rats by hypoglycemic and hypolipidemic effects, and concomitant activation of the Nrf2/antioxidant axis. Journal of Functional Foods. 2022 Dec 1; 99:105295.
72.    Zhang J, Zhao X, Zhu H, Wang J, Ma J, Gu M. Apigenin protects against renal tubular epithelial cell injury and oxidative stress by high glucose via regulation of NF-E2-related factor 2 (Nrf2) pathway. Medical science monitor: international medical journal of experimental and clinical research. 2019 Jul 16; 25:5280.
73.    Li P, Bukhari SN, Khan T, Chitti R, Bevoor DB, Hiremath AR, SreeHarsha N, Singh Y, Gubbiyappa KS. RETRACTED ARTICLE: Apigenin-Loaded Solid Lipid Nanoparticle Attenuates Diabetic Nephropathy Induced by Streptozotocin Nicotinamide Through Nrf2/HO-1/NF-kB Signalling Pathway. International journal of nanomedicine. 2020 Nov 19:9115-24.
74.    Malik S, Suchal K, Khan SI, Bhatia J, Kishore K, Dinda AK, Arya DS. Api-genin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-ĸB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am J Physiol Ren Physiol. 2017;313: F414–22.
75.    Arya DV, Alik SM, Suchal K, Bhatia J. A18239 Apigenin ameliorates streptozotocin induced diabetic nephropathy in rats by modulation of oxidative stress, apoptosis and inflammation through MAPK pathway. Journal of Hypertension. 2018 Oct 1;36: e63.

Recomonded Articles:

Author(s): Gautam Kumar, Ravi Kumar, Harshit Rana

DOI: 10.52711/2321-5836.2023.00007         Access: Open Access Read More

Author(s): Purnendu Panda, Banamali Das, DS Sahu, SK Meher, BK Das, MM Rao, GChD Naga Lakshmi.

DOI: 10.5958/2321-5836.2015.00011.7         Access: Open Access Read More

Author(s): Purnendu Panda, Banamali Das, DS Sahu, SK Meher, Das, GC Nanda.

DOI: Not Available         Access: Open Access Read More

Author(s): Syed Sagheer Ahmed, Chandra Prakash. K, Saba Tabassum, Noor Salma, Ahalya Devi. K H

DOI: 10.5958/2321-5836.2019.00003.X         Access: Open Access Read More

Author(s): Mahesh Babasaheb Kolap, Pratiksha Kisan Omase, Abhijeet Vijay Dashwant, Rutuja Shrikant Namde

DOI: 10.52711/2321-5836.2021.00016         Access: Open Access Read More

Author(s): Syed Shafeeq. R, Shekshavali. T, Syed Sulthan Ahamed. S N

DOI: 10.5958/2321-5836.2018.00026.5         Access: Open Access Read More

Author(s): Sudhanshu Kumar Meher, Purnendu Panda, Banmali Das, G. C. Bhuyan, Dr. K. K. Rath

DOI: 10.5958/2321-5836.2018.00023.X         Access: Open Access Read More

Author(s): T. Shekshavali, S. Roshan

DOI: 10.5958/2321-5836.2016.00031.8         Access: Open Access Read More

Author(s): VI Zalavadiya, VK Shah, DD Santani, MS Patel, JM Fosi, AK Chaudhary.

DOI: Not Available         Access: Open Access Read More

Author(s): Sachin Aglawe, Amol Gayke, Kavita Sharma, Sonali Jadhav, Sanjivani Gore, Bhagyashri Pandit, Sonali Valate, Mayuri Wagh

DOI: 10.5958/2321-5836.2020.00003.8         Access: Open Access Read More

Author(s): Kishan K G, Shekshavali. T, Kuppast I.J, Kishan Kumar MA, Jeevanagouda Patil

DOI: 10.5958/2321-5836.2016.00030.6         Access: Open Access Read More

Author(s): S. D. Kadam, S. A. Chavhan, S. A. Shinde, P. N. Sapkal

DOI: 10.5958/2321-5836.2018.00032.0         Access: Open Access Read More

Author(s): Ganesh G. Dhakad, Kaveri P. Tambe, Sangita P. Shirsat, Neha R. Jaiswal

DOI: 10.52711/2321-5836.2022.00031         Access: Open Access Read More

Author(s): Ganesh G. Dhakad, Sayali V. Ganjiwale, Shweta M. Nawghare, Abhijit V. Shrirao, N.I. Kochar, A. V. Chandewar

DOI: 10.52711/2321-5836.2023.00014         Access: Open Access Read More

Author(s): Sanjib Kumar Das, Anuradha Das, Banamali Das, Purnendu Panda, G. C. Bhuyan, Bipin Bihari Khuntia

DOI: 10.5958/2321-5836.2017.00036.2         Access: Open Access Read More

Author(s): Dipsundar Sahu, Shakti Bhushan, Debajyoti Das, Saroj Kumar Debnath, Laxmidhar Barik, Vandana Meena, Vikas Singh, Amit Kumar Dixit, PVV Prasad

DOI: 10.52711/2321-5836.2021.00015         Access: Open Access Read More

Author(s): Jeevanagouda Patil, Kuppast I.J, Kishan Kumar M A, Kishan K G

DOI: 10.5958/2321-5836.2016.00032.X         Access: Open Access Read More

Author(s): Swapnil S. Lad, Swati U. Kolhe, Omkar A. Devade, Chetashri N. Patil, Rohit D. Nalawade, Manthan R. Rode

DOI: 10.52711/2321-5836.2023.00026         Access: Open Access Read More

Author(s): Nikhil P. Varghese, Shekshavali T. , Prathib B., I.J. Kuppast

DOI: 10.5958/2321-5836.2017.00007.6         Access: Open Access Read More

Author(s): Purnendu Panda, Indu.S, Banamali Das, Krishna Rao.S, M.M. Rao

DOI: 10.52711/2321-5836.2023.00025         Access: Open Access Read More

Research Journal of Pharmacology and Pharmacodynamics (RJPPD) is an international, peer-reviewed journal....... Read more >>>

RNI: Not Available                     
DOI: 10.5958 2321-5836 

Journal Policies & Information




Recent Articles




Tags