Author(s): Ashwini S. Patil, Manish S. Bhatia

Email(s): ashwindhara96@gmail.com

DOI: 10.52711/2321-5836.2026.00004   

Address: Ashwini S. Patil1,2*, Manish S. Bhatia1
1Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India, 416013.
2Annasaheb Dange College of B Pharmacy, Ashta, Maharashtra, India, 416301.
*Corresponding Author

Published In:   Volume - 18,      Issue - 1,     Year - 2026


ABSTRACT:
Background: Protozoan ailments, such as leishmaniasis, Chagas disease, African trypanosomiasis, amoebiasis, and malaria, present social, economic challenges contributing significantly to global health burdens. Neglected Tropical Diseases (NTDs) encompass seventeen infectious maladies endemic in distinct developing nations, triggering significant morbidity and mortality, and perpetuating poverty. Effective remedies necessities potent therapeutic entities; however, Pharmacodynamic (PD) and Pharmacokinetic (PK) limitations impede the attainment of therapeutic efficacy. Objectives: The Current review explores PD and PK constraints of antiprotozoal drugs, focusing on challenges in efficacy, absorption, metabolism, as well as drug resistance. PD constraints: Target-site limitations, toxicity, and narrow therapeutic window, resistance mechanisms. These issues are further compounded by the toxicity and resistance observed with existing antiprotozoal agents. PK constraints: Drug-drug interactions, short shelf life, high clearance rate, poor drug distribution, and reduced bioavailability. Conclusion: Overcoming these limitations requires the development of novel antiprotozoal agents, including nanocarrier-based drug delivery systems, prodrug strategies, and combination therapies tailored through personalized medicine. Addressing PD along with PK constraints is pivotal in therapeutic success. The integration of advanced drug delivery systems, prodrug approaches, and nanotechnology with precision medicine can enhance efficacy, reduce toxicity, and mitigate drug resistance in antiprotozoal therapy.


Cite this article:
Ashwini S. Patil, Manish S. Bhatia. Pharmacodynamic and Pharmacokinetic Limitations of Anti-protozoal drugs: A Comprehensive Review. Research Journal of Pharmacology and Pharmacodynamics. 2026;18(1):15-8. doi: 10.52711/2321-5836.2026.00004

Cite(Electronic):
Ashwini S. Patil, Manish S. Bhatia. Pharmacodynamic and Pharmacokinetic Limitations of Anti-protozoal drugs: A Comprehensive Review. Research Journal of Pharmacology and Pharmacodynamics. 2026;18(1):15-8. doi: 10.52711/2321-5836.2026.00004   Available on: https://rjppd.org/AbstractView.aspx?PID=2026-18-1-3


REFERENCE:
1.    Turkeltaub, J. A., McCarty, T. R. and Hotez, P. J. The intestinal protozoa: Emerging impact on global health and development. Current Opinion in Gastroenterology. 2015; 31: 38–44 https://doi.org/10.1097/MOG.0000000000000135.
2.    Fletcher, S. M., Stark, D., Harkness, J. and Ellis, J. Enteric protozoa in the developed world: A public health perspective. Clinical Microbiology Reviews. 2012; 25: 420–449 https://doi.org/10.1128/CMR.05038-11.
3.    Cowman, A. F., Healer, J., Marapana, D., and Marsh, K. Malaria: Biology and Disease. Cell. 2016; 167: 610–624 https://doi.org/10.1016/j.cell.2016.07.055.
4.    Kumar Bhasin, V. Zoology Biology of Parasitism Plasmodium: Morphology and Life Cycle Development Team Content Reviewer: Zoology Biology of Parasitism Plasmodium: Morphology and Life Cycle Module Id.
5.    Slater, L. et al. Current methods for the detection of Plasmodium parasite species infecting humans. Current Research in Parasitology and Vector-Borne Diseases. 2022; 2. https://doi.org/10.1016/j.crpvbd.2022.100086.
6.    Georgiadou, S. P., Makaritsis, K. P. and Dalekos, G. N. Leishmaniasis revisited: Current aspects on epidemiology, diagnosis and treatment. J Transl Int Med. 2015; 3: 43–50.
7.    Arenas, R., Torres-Guerrero, E., Quintanilla-Cedillo, M. R. and Ruiz-Esmenjaud, J. Leishmaniasis: A review.  Research. 2017; 6 https://doi.org/10.12688/f1000research.11120.1.
8.    Sereno, D. Leishmania (Mundinia) spp.: from description to emergence as new human and animal Leishmania pathogens. New Microbes New Infect. 2019; 30.
9.    Suárez, C., Nolder, D., García-Mingo, A., Moore, D. A. and Chiodini, P. L. Diagnosis and Clinical Management of Chagas Disease: An Increasing Challenge in Non-Endemic Areas. Res Rep Trop Med Volume. 2022; 13: 25–40.
10.    Chagas Disease. (MDPI, 2021). doi:10.3390/books978-3-0365-1249-5.
11.    Cerbán, F. M. et al. Signaling pathways that regulate Trypanosoma cruzi infection and immune response. Biochim Biophys Acta Mol Basis Dis. 2020; 1866.
12.    E, Dr. S. R. Reddy. A Clinical Study of Amoebic Dysentery and Its Homoeopathic Management. IOSR J Pharm Biol Sci.  2017; 12: 98–102.
13.    Jasim, G. A. Diagnosis and Genotyping Detection of Entamoeba Spp. in Human and Some Animals. International Journal of Research Studies in Biosciences.  2015; 3: 11–18.
14.    Sleep Medicine. (Springer New York, New York, NY, 2015. doi:10.1007/978-1-4939-2089-1.
15.    Papagni, R. et al. Human African Trypanosomiasis (sleeping sickness): Current knowledge and future challenges. Frontiers in Tropical Diseases. 2023; 4 https://doi.org/10.3389/fitd.2023.1087003.
16.    Capela, R., Moreira, R. and Lopes, F. An overview of drug resistance in protozoal diseases. International Journal of Molecular Sciences. 2019; 20 https://doi.org/10.3390/ijms20225748 ().
17.    Younus, M., Zaffar, M. and Editors, H. Sarfraz Ahmed, Suvash Chandra Ojha, Muhammad Najam-Ul-Haq. Biochemistry of Drug Resistance.
18.    Pratt-Riccio, L. R. et al. Chloroquine and mefloquine chemoresistance profiles are not related to the Circumsporozoite Protein (CSP) VK210 subtypes in field isolates of Plasmodium vivax from Manaus, Brazilian Amazon. Mem Inst Oswaldo Cruz 2019; 114.
19.    Zhang, W. Journal of Medicinal and Organic Chemistry Anti-malarial Amodiaquine Analogs: An Over View. J. Med. Org. Chem. 2024; 7: 219–220.
20.    Kamil, M. et al. An Alternative Autophagy-Related Mechanism of Chloroquine Drug Resistance in the Malaria Parasite. Antimicrob Agents Chemother.  2022; 66.
21.    Ali, N. A. et al. Low Prevalence of Antimalarial Resistance Mutations in India During 2014-2015: Impact of Combining First-line Therapy With Primaquine. Journal of Infectious Diseases. 2024; 229: 1574–1583.
22.    Ward, K. E. et al. Integrative Genetic Manipulation of Plasmodium cynomolgi Reveals Multidrug Resistance-1 Y976F Associated with Increased in Vitro Susceptibility to Mefloquine. Journal of Infectious Diseases. 2023; 227: 1121–1126.
23.    Wicht, K. J., Small-Saunders, J. L., Hagenah, L. M., Mok, S. and Fidock, D. A. Mutant PfCRT Can Mediate Piperaquine Resistance in African Plasmodium falciparum with Reduced Fitness and Increased Susceptibility to Other Antimalarials. Journal of Infectious Diseases. 2022; 226: 2021–2029.
24.    Florimond, C. et al. Impact of piperaquine resistance in Plasmodium falciparum on malaria treatment effectiveness in The Guianas: a descriptive epidemiological study. Lancet Infect Dis. 2024; 24: 161–171.
25.    Nunes, P. A., Tenreiro, S. and Sá-Correia, I. Resistance and adaptation to quinidine in Saccharomyces cerevisiae: Role of QDR1 (YIL120w), encoding a plasma membrane transporter of the major facilitator superfamily required for multidrug resistance. Antimicrob Agents Chemother. 2001; 45: 1528–1534.
26.    Plowe, C. V., Djimde, A., Bouare, M., Doumbo, O. and Wellems, T. E. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: Polymerase chain reaction methods for surveillance in Africa. American Journal of Tropical Medicine and Hygiene. 1995; 52: 565–568.
27.    Young, M. D., Head, S. and Burgess, R. W. Pyrimethamine Resistance in Plasmodium Vivax Malaria USA; Member, WHO Expert Advisory Panel on Malaria. Bull. Org. mond. Sante.  1959; 20.
28.    Murithi, J. M. et al. The Plasmodium falciparum ABC transporter ABCI3 confers parasite strain-dependent pleiotropic antimalarial drug resistance. Cell Chem Biol. 2022; 29: 824-839.e6.
29.    Li, X. et al. Drug Resistance (Dapsone, Rifampicin, Ofloxacin) and Resistance-Related Gene Mutation Features in Leprosy Patients: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences.  2022; 23 https://doi.org/10.3390/ijms232012443.
30.    Carter, K. C. et al. Sodium stibogluconate resistance in Leishmania donovani correlates with greater tolerance to macrophage antileishmanial responses and trivalent antimony therapy. Parasitology. 2005; 131: 747–757.
31.    Mishra, J. and Singh, S. Miltefosine resistance in Leishmania donovani involves suppression of oxidative stress-induced programmed cell death. Exp Parasitol. 2013; 135: 397–406.
32.    Dhand, A. and Snydman, D. R. Mechanism of Resistance in Metronidazole. Antimicrobial Drug Resistance. 2009: 223–227 doi:10.1007/978-1-59745-180-2_19.
33.    Murithi, J. M. et al. The Plasmodium falciparum ABC transporter ABCI3 confers parasite strain-dependent pleiotropic antimalarial drug resistance. Cell Chem Biol. 2022; 29: 824-839.e6.
34.    Bhinsara, D. B. et al. Benzimidazole Resistance: An Overview. Int J Curr Microbiol Appl Sci. 2018; 7: 3091–3104.
35.    Capela, R., Moreira, R. and Lopes, F. An overview of drug resistance in protozoal diseases. International Journal of Molecular Sciences. 2019; 20  https://doi.org/10.3390/ijms20225748 (2019).
36.    Jhingran, A., Chawla, B., Saxena, S., Barrett, M. P. and Madhubala, R. Paromomycin: Uptake and resistance in Leishmania donovani. Mol Biochem Parasitol. 2009; 164: 111–117.
37.    Korba, B. E., Glenn, J. S., Ayers, M. S. and Rossignol, J. F. Parallel Session 3: Hepatocellular Carcinoma: Clinical S11 22 Studies of The Potential for Resistance to Nitazoxanide or Tizoxanide.
38.    Magwaza, R. N. et al. Evaluation of Novel 4 – Aminoquinoline Hydrazone Analogues as Potential Leads for Drug-Resistant Malaria. 2023. https://doi.org/10.20944/preprints202307.1963.v1
39.    Bray, P. G., Barrett, M. P., Ward, S. A. and De Koning, H. P. Pentamidine uptake and resistance in pathogenic protozoa: Past, present and future. Trends in Parasitology. 2003; 19: 232–239 https://doi.org/10.1016/S1471-4922(03)00069-2.
40.    Wiedemar, N. Suramin Resistance in African Trypanosomes.
41.    Clemmons, B. A. et al. Ruminal protozoal populations of angus steers differing in feed efficiency. Animals. 2021; 11.
42.    Lei, Z. N. et al. Chloroquine and hydroxychloroquine in the treatment of malaria and repurposing in treating COVID-19. Pharmacology and Therapeutics. 2020; 216  https://doi.org/10.1016/j.pharmthera.2020.107672.
43.    Abd-Rahman, A. N. et al. Characterizing the pharmacological interaction of the antimalarial combination artefenomel-piperaquine in healthy volunteers with induced blood stage Plasmodium falciparum. 2024 https://doi.org/10.1101/2024.02.07.24302432 ().
44.    Brueckner, R. P., Ohrt, C., Baird, J. K., Milhous, W. K. and Rosenthal, P. J. 7 8-Aminoquinolines.
45.    Kuepfer, I. et al. Safety and Efficacy of the 10-Day Melarsoprol Schedule for the Treatment of Second Stage Rhodesiense Sleeping Sickness. PLoS Negl Trop Dis. 2012; 6.
46.    Jackson, Y. et al. Tolerance and safety of nifurtimox in patients with chronic Chagas disease. Clinical Infectious Diseases. 2010; 51.
47.    Grollman, A. P. Inhibitors of Protein Biosynthesis. Journal of Biological Chemistry. 1968; 243: 4089–4094.
48.    Grigoryan, M., Manukyan, V., Hovhannisyan, S. and Apresyan, H. A Case Series of Hemophagocytic Lymphohistiocytosis: An Atypical Presentation of Visceral Leishmaniasis. Cureus. 2024 doi:10.7759/cureus.58237.
49.    Hamill, R. J. Amphotericin B formulations: A comparative review of efficacy and toxicity. Drugs. 2013; 73: 919–934 https://doi.org/10.1007/s40265-013-0069-4.
50.    Pokharel, P., Ghimire, R. and Lamichhane, P. Efficacy and Safety of Paromomycin for Visceral Leishmaniasis: A Systematic Review. Journal of Tropical Medicine. 2021; 2021 https://doi.org/10.1155/2021/8629039.
51.    Hossain, M., Giri, P. and Kumar, G. S. DNA intercalation by quinacrine and methylene blue: A comparative binding and thermodynamic characterization study. DNA Cell Biol.  2008; 27: 81–90.
52.    Funkhouser-Jones, L. J., Ravindran, S., and Sibley, L. D. Defining stage-specific activity of potent new inhibitors of Cryptosporidium parvum growth in vitro. mBio. 2020; 11.
53.    Chaurasiya, N. D. et al. Enantioselective interactions of anti-infective 8-aminoquinoline therapeutics with human monoamine oxidases A and B. Pharmaceuticals. 2021; 14.
54.    Pukrittayakamee, S. et al. Primaquine in glucose-6-phosphate dehydrogenase deficiency: an adaptive pharmacometric assessment of ascending dose regimens in healthy volunteers. Elife 2024; 13.
55.    Gibhard, L. et al. The Artemiside-artemisox-artemisone-M1 Tetrad: Efficacies Against Blood Stage P.andlt; emandgt; falciparumandlt;/emandgt; Parasites, DMPK Properties, and the Case for Artemiside.  2021 https://doi.org/10.20944/preprints202111.0072.
56.    A numeric color-coded reference table for annotated side-by-side comparison of revised container labeling and previously submitted container labeling. https://www.fda.gov/drugsatfda.
57.    Jizba, T. et al. A Comparison of Clinical Outcomes Associated with Dosing Metronidazole Every 8 Hours Versus Every 12 Hours: A Systematic Review and Meta-Analysis. 2023   https://doi.org/10.20944/preprints202307.1275.v1 ().
58.    Beteck, R. M. et al. Synthesis and in vitro antiprotozoal evaluation of novel metronidazole–Schiff base hybrids. Arch Pharm (Weinheim). 2023; 356.
59.    Guga, G. et al. Impact of azithromycin and nitazoxanide on the enteric infections and child growth: Findings from the Early Life Interventions for Childhood Growth and Development in Tanzania (ELICIT) trial. PLoS One. 2023; 18.
60.    Irabuena, C. et al. Synthesis and antiplasmodial assessment of nitazoxanide and analogs as new antimalarial candidates. Medicinal Chemistry Research. 2022; 31: 426–435.
61.    Nok, A. J. Arsenicals (melarsoprol), pentamidine and suramin in the treatment of human African trypanosomiasis. Parasitol Res.  2003; 90: 71–79.
62.    Knight, R. C., Skolimowski, I. M. and Edwards, D. I. The interaction of reduced metronidazole with DNA. Biochem Pharmacol.  1978; 27: 2089–2093.
63.    Maldonado, E., Rojas, D. A., Morales, S., Miralles, V. and Solari, A. Dual and Opposite Roles of Reactive Oxygen Species (ROS) in Chagas Disease: Beneficial on the Pathogen and Harmful on the Host. Oxid Med Cell Longev. 2020: 1–17.
64.    Caruso, G. et al. The Therapeutic Potential of Carnosine as an Antidote against Drug-Induced Cardiotoxicity and Neurotoxicity: Focus on Nrf2 Pathway. Molecules. 2022; 27: 4452.
65.    Aguilar-Díaz, H., Carrero, J. C., Argüello-García, R., Laclette, J. P. and Morales-Montor, J. Cyst and encystment in protozoan parasites: Optimal targets for new life-cycle interrupting strategies? Trends in Parasitology. 2011; 27: 450–458 https://doi.org/10.1016/j.pt.2011.06.003 ().
66.    Spina, E. and Perucca, E. Clinical Significance of Pharmacokinetic Interactions Between Antiepileptic and Psychotropic Drugs. Epilepsia. 2002; 43: 37–44.
67.    Chan, X. H. S. et al. The cardiovascular effects of amodiaquine and structurally related antimalarials: An individual patient data meta-analysis. PLoS Med. 2021; 18: e1003766.
68.    Hanboonkunupakarn, B. et al. Sequential Open-Label Study of the Safety, Tolerability, and Pharmacokinetic Interactions between Dihydroartemisinin-Piperaquine and Mefloquine in Healthy Thai Adults. Antimicrob Agents Chemother. 2019; 63.
69.    Chairat, K. et al. Enantiospecific pharmacokinetics and drug–drug interactions of primaquine and blood-stage antimalarial drugs. Journal of Antimicrobial Chemotherapy.  2018; 73: 3102–3113.
70.    Stienlauf, S. et al. Potential drug interactions in travelers with chronic illnesses: A large retrospective cohort study. Travel Med Infect Dis. 2014; 12: 499–504.
71.    Gebauer, M. G., Nyfort‐Hansen, K., Henschke, P. J. and Gallus, A. S. Warfarin and Acetaminophen Interaction. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2003; 23: 109–112.
72.    Gomez-Lechon, M., Donato, M., Castell, J. and Jover, R. Human Hepatocytes in Primary Culture: The Choice to Investigate Drug Metabolism in Man. Curr Drug Metab. 2004; 5: 443–462.
73.    Hussain, A. et al. Recent clinical studies on side effects of antiprotozoal and antiparasitic drugs. 317–324 (2024). doi:10.1016/bs.seda.2024.10.001.
74.    Stage, T. B., Brøsen, K. and Christensen, M. M. H. A Comprehensive Review of Drug–Drug Interactions with Metformin. Clin Pharmacokinet.  2015; 54: 811–824.
75.    Francis, J. A. et al. Interaction mechanism of an antimalarial drug, sulfadoxine with human serum albumin. Spectroscopy Letters. 2020; 53: 391–405.
76.    Bacman, D., Kuhn, A. and Ruzicka, T. Dapsone and Retinoids. in Cutaneous Lupus Erythematosus 373–390 (Springer-Verlag, Berlin/Heidelberg). doi:10.1007/3-540-26581-3_27.
77.    Ovung, A. and Bhattacharyya, J. Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions. Biophys Rev.  2021; 13: 259–272.
78.    Canfield, C. J., Pudney, M. and Gutteridge, W. E. Interactions of Atovaquone with Other Antimalarial Drugs against Plasmodium falciparum in Vitro. Exp Parasitol. 1995; 80: 373–381.
79.    Hose, M. et al. Amitriptyline inhibits Plasmodium development in infected red blood cells by modulating sphingolipid metabolism and glucose uptake. Biomedicine and Pharmacotherapy. 2025; 189: 118331.
80.    Mota, S. L. A. et al. Benznidazole/miltefosine combination improves the treatment of Chagas disease. Observatório de la economía latinoamericana. 2024; 22: e5827.
81.    Steel, B. J. and Wharton, C. Metronidazole and alcohol. Br Dent J. 2020; 229: 150–151.
82.    Ribeiro, I. et al. Drug-Drug Interaction Study of Benznidazole and E1224 in Healthy Male Volunteers. Antimicrob Agents Chemother. 2021; 65.
83.    Surur, A. S. et al. Fexinidazole optimization: enhancing anti-leishmanial profile, metabolic stability and hERG safety. RSC Med Chem. 2024; 15: 3837–3852.
84.    de Morais-Teixeira, E., Gallupo, M. K., Rodrigues, L. F., Romanha, A. J. and Rabello, A. In vitro interaction between paromomycin sulphate and four drugs with leishmanicidal activity against three New World Leishmania species. Journal of Antimicrobial Chemotherapy. 2014; 69: 150–154.
85.    Rivas, L., Murza, A., Sánchez-Cortés, S. and García-Ramos, J. V. Interaction of Antimalarial Drug Quinacrine with Nucleic Acids of Variable Sequence Studied by Spectroscopic Methods. J Biomol Struct Dyn. 2000; 18: 371–383.
86.    Lachaal, M. and Venuto, R. C. Nephrotoxicity and hyperkalemia in patients with acquired immunodeficiency syndrome treated with pentamidine. Am J Med. 1989; 87: 260–263.
87.    Vlachova, V. and L. A. and V. L. and O. R. Suramin affects capsaicin responses and capsaicin-noxious heat interactions in rat dorsal root ganglia neurons. Physiol Res. 2002; 51: 193--198.
88.    Supuran, C. T. Antiprotozoal drugs: challenges and opportunities. Expert Opinion on Therapeutic Patents. 2023; 33: 133–136 Preprint at https://doi.org/10.1080/13543776.2023.2201432.
89.    Pertino, M. W. et al. Exploring Benzo.   Chromene Derivatives as Agents Against Protozoal and Mycobacterial Infections. 2023. https://doi.org/10.2139/ssrn.4647252 ().
90.    Kang, H. K., Kim, C., Seo, C. H. and Park, Y. The therapeutic applications of antimicrobial peptides (AMPs): a patent review. Journal of Microbiology. 2017; 55. https://doi.org/10.1007/s12275-017-6452-1 ().
91.    Osipov, A. V. et al. The Potassium Channel Blocker β-Bungarotoxin from the Krait Bungarus multicinctus Venom Manifests Antiprotozoal Activity. Biomedicines. 2023; 11.
92.    Rahman, M. H. et al. Protozoal food vacuoles enhance transformation in Vibrio cholerae through SOS-regulated DNA integration. ISME Journal. 2022; 16: 1993–2001.
93.    Gunun, P. et al. The Effect of Phytonutrients in Terminalia chebula Retz. on Rumen Fermentation Efficiency, Nitrogen Utilization, and Protozoal Population in Goats. Animals. 2022; 12.
94.    Hu, R. S., Hesham, A. E. L. and Zou, Q. Machine Learning and Its Applications for Protozoal Pathogens and Protozoal Infectious Diseases. Frontiers in Cellular and Infection Microbiology. 2022; 12 Preprint at https://doi.org/10.3389/fcimb.2022.882995 ().
95.    Maria Laura, S., Carolina Leticia, B. and Alan, T. The Challenge of Finding New Therapies for Sleeping Sickness. in The Microbiology of Central Nervous System Infections.  2018: 279–303 doi:10.1016/B978-0-12-813806-9.00014-7.
96.    Wells, K. and Clark, N. J. Host Specificity in Variable Environments. Trends in Parasitology.  2019; 35:  452–465 Preprint at https://doi.org/10.1016/j.pt.2019.04.001.

Recomonded Articles:

Author(s): Mahesh Babasaheb Kolap, Pratiksha Kisan Omase, Abhijeet Vijay Dashwant, Rutuja Shrikant Namde

DOI: 10.52711/2321-5836.2021.00016         Access: Open Access Read More

Author(s): G. Swapna, J. Poojitha, B. Pravallika

DOI: 10.5958/2321-5836.2019.00027.2         Access: Open Access Read More

Author(s): Anita S Wanjari, Namrata B. Chouragade.

DOI: 10.5958/2321-5836.2015.00022.1         Access: Open Access Read More

Author(s): Kuchake VG, Patil PH, Mahajan HS, Ingle PV, Surana SJ, Thakare MM, S Sudharshini.

DOI: Not Available         Access: Open Access Read More

Author(s): DK Suresh, Mangesh Gavali, Vivek Ingale, Bhaumik Thakar, Md. Saifuddin K, Raghvendra Rao.

DOI: Not Available         Access: Open Access Read More

Author(s): Ashish Kumar Netam, Jhakeshwar Prasad, Trilochan Satapathy

DOI: 10.5958/2321-5836.2018.00004.6         Access: Open Access Read More

Author(s): Patil SM, Sapkale GN, Kumbhar PB, Maske AP.

DOI: Not Available         Access: Open Access Read More

Author(s): DK Suresh, Vivek B. Ingale, Mangesh S Gavali, Bhaumik N Thakar, Raghvendra Rao NG.

DOI: Not Available         Access: Open Access Read More

Author(s): Varsha S. Marathe, Akanksha P. Nikum, Gautam S. Marathe, Sulbha G. Patil

DOI: 10.52711/2321-5836.2023.00017         Access: Open Access Read More

Author(s): Jisha K, Venkateswaramurthy N, Sambathkumar R

DOI: 10.5958/2321-5836.2020.00007.5         Access: Open Access Read More

Author(s): Sahu Geetanjali, Chandy Anish, Sahu Raju

DOI: 10.52711/2321-5836.2022.00005         Access: Open Access Read More

Author(s): Rohan Pal, Ritam Ghosh, Banibrata Acharyya, Rajat Subhra Saha, Sudipta Dey, Arpita Nandy, Arin Bhattacharjee

DOI: 10.52711/2321-5836.2023.00032         Access: Open Access Read More

Author(s): Dhanapuram Akhila Banu, Gopi Mareedu, Vivek B, Velmurugan C

DOI: 10.52711/2321-5836.2022.00037         Access: Open Access Read More

Author(s): Ishan Panchal, B Panigrahi, CN Patel.

DOI: Not Available         Access: Open Access Read More

Author(s): Santosh B. Dighe, Sonawane Shubham Ramesh, Thete Bhati Sharad, Tarkase Sahil Bhausaheb

DOI: 10.52711/2321-5836.2025.00031         Access: Closed Access Read More

Author(s): Manisha D Patel, Jigna S Shah, Parloop A Bhatt.

DOI: Not Available         Access: Open Access Read More

Research Journal of Pharmacology and Pharmacodynamics (RJPPD) is an international, peer-reviewed journal....... Read more >>>

RNI: Not Available                     
DOI: 10.5958 2321-5836 

Journal Policies & Information




Recent Articles




Tags