Author(s): Varsha S. Marathe, Akanksha P. Nikum, Gautam S. Marathe, Sulbha G. Patil

Email(s): varshmarathe10@gmail.com , akankshanikum3335@gmail.com , gautammarathe9@gmail.com , sulbha.pharma1@gmail.com

DOI: 10.52711/2321-5836.2023.00017   

Address: Varsha S. Marathe*, Akanksha P. Nikum, Gautam S. Marathe, Sulbha G. Patil
P.S.G.V.P. Mandal’s College of Pharmacy Shahada Maharashtra.
*Corresponding Author

Published In:   Volume - 15,      Issue - 2,     Year - 2023


ABSTRACT:
Nanoparticles are defined as particulate dispersions or solid particles with a size between 10 and 1000 nm. A one billionth of a metre scale is the simplest unit of measurement for nanotechnology. Silver nanoparticles superiority over silver in bulk forms is primarily due to the size, shape, composition, crystallinity, and structure of AgNPs. Silver nanoparticles synthesis can be achieved by physical, chemical and green methods. Evaporation-condensation and laser ablation processes are used in the physical synthesis of silver nanoparticle. Evaporation-condensation has been used to create a number of metal nanoparticles in the past, including fullerene, lead sulphide, cadmium sulphide, gold, and silver. Chemical reduction, photo-induced reduction, micro-emulsion, microwave-assisted synthesis, UV-initiated photo-reduction, electrochemical synthetic technique, and irradiation procedures are some of the chemical processes utilised to create nanoparticles. The temperature, pH, concentration, type of precursor, reducing and stabilising agents, and the molar ratio of surfactant and precursor are some of the reaction parameters that control how NPs form and grow in the chemical method. Utilizing biological organisms like bacteria, mould, algae, and plants allows for one-step synthesis. Proteins and enzymes found in plants and microbes are used in the reduction process to create nanoparticles. Silver nanoparticles function as nanoscale antennas at the plasmon resonant wavelength, boosting the strength of a nearby electromagnetic field. Raman spectroscopy, which uses molecules distinctive vibrational modes to identify them, is one spectroscopic method that benefits from the strengthened electromagnetic field. The plasmonic Au/Ag hollow-shelled NIR SERS probes were put together on silica nanospheres, which showed a redshift in the plasmonic extinction band in the NIR optical window region (700–900 nm). Animal tissues that were 8 mm deep showed a measurable signal in the NIR-SERS nanoprobe signals for single particle detection. Silver nanoparticles size-tunable absorption spectra can be used to multiplex optical attributes for point-of-care diagnostics. Silver nanoparticles have antimicrobial, anti-neoplastic, antioxidant, and antidiabetic activity. Silver nanoparticles also shows some kind of toxicity like Oral toxicity, Immunotoxicity, Neurotoxicity, Environmental toxicity, Reproductive toxicity etc.


Cite this article:
Varsha S. Marathe, Akanksha P. Nikum, Gautam S. Marathe, Sulbha G. Patil. A Review on Silver Nanoparticles. Research Journal of Pharmacology and Pharmacodynamics.2023;15(2):87-5. doi: 10.52711/2321-5836.2023.00017

Cite(Electronic):
Varsha S. Marathe, Akanksha P. Nikum, Gautam S. Marathe, Sulbha G. Patil. A Review on Silver Nanoparticles. Research Journal of Pharmacology and Pharmacodynamics.2023;15(2):87-5. doi: 10.52711/2321-5836.2023.00017   Available on: https://rjppd.org/AbstractView.aspx?PID=2023-15-2-9


REFERENCES:
1.    M.C. Garnett, P. Kallinteri. (2006). Occup. Med (Lond), 56(5), 307-311.
2.    J. Curtis, M. Greenberg, J. Kester, S. Philips, G. Krieger. (2006). Toxicol. Sci, 25(4), 245-260.
3.    Stylios GK, Giannoudis PV, Wan T. (2005). Applications of nanotechnologies in medical practice. Injury, 36 (4, Suppl. 1): S6-S13.
4.    The Royal Society and the Royal Academy of Engineering. Nanoscience and Nanotechnologies. The Royal Society and the Royal Academy of Engineering Report, July 2004.
5.    D. K. Pal, A. K. Nayak. (2010). Int. J. Pharm. Sci. Rev. Res, 1(1), 1-7.
6.    S. Gupta, B.S. Yadav, R, Kesharwani, K.P. Mishra, N.K. Singh. (2010). Arch. Appl. Sci. Res, 2(1), 37-51.
7.    Roco MC. (2003). Nanotechnology: Convergence with modern biology and medicine. Curr Opinion Biotech, 14, 337-346.
8.    O.C. Farokhzad, R. Langer. (2006). Adv. Drug. Deliv. Rev, 58, 1456-1459.
9.    H.S. Yoo, J.E. Oh, K.H. Lee, T.G. Park. (1999). Pharm. Res, 16, 1114-1118.
10.    Syafiuddin, A.; Salmiati; Salim, M.R.; Kueh, A.B.H.; Hadibarata, T.; Nur, H. (2017). A Review of silver nanoparticles: Research trends, global consumption, synthesis, properties, and future Challenges. J. Clin. Chem. Soc, 64, 732-756.
11.    Kumar, A.; Vemula, P.K.; Ajayan, P.M.; John, G. (2008).  Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater, 7, 236-241.
12.    Desireddy, A.; Conn, B.E.; Guo, J.; Yoon, B.; Barnett, R.N.; Monahan, B.M.; Kirschbaum, K.; Griffith, W.P.; Whetten, R.L.; Landman, U.; et al. (2013). Ultrastable silver nanoparticles. Nature, 501, 399-402.
13.    Sun, Y.; Xia, Y. (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science, 298, 2176-2179.
14.    Atwater, H.A.; Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nat. Mater, 9, 205-213.
15.    Senapati, S. (2005). Biosynthesis and immobilization of nanoparticles and their applications. University of pune, India.
16.    Klaus-Joerger, T.; Joerger, R.; Olsson, E. & Granqvist, C.G. (2001). Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends in Biotechnology, 19, 15-20.
17.    Wang, L.; Zhang, T.; Li, P.; Huang, W.; Tang, J.; Wang, P.; Liu, J.; Yuan, Q.; Bai, R.; Li, B.; et al. (2015). Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity. ACS Nano, 9, 6532-6547.
18.    Heiligtag, F.J.; Niederberger, M. (2013). The fascinating world of nanoparticle research. Mater. Today, 16, 262-271.
19.    Amendola, V.; Meneghetti, M. (2009). Laser ablation synthesis in solution and size manipulation of noble metal Nanoparticles. Phys. Chem. Chem. Phys, 11, 3805-3821.
20.    Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. (2014). Synthesis of silver nanoparticles: Chemical, Physical and biological methods. Res. Pharm. Sci, 9, 385-406.
21.    Kruis, F.; Fissan, H. & Rellinghaus, B. (2000). Sintering and evaporation characteristics of Gas-phase synthesis of size-selected PbS nanoparticles. Mater Sci Eng. B, 69, 329-324.
22.    Magnusson, M.; Deppert, K.; Malm, J.; Bovin, J. & Samuelson, L. (1999). Gold nanoparticles: Production, reshaping, and thermal charging. J Nanoparticle Res, 1, 243-251.
23.    Jung, J.H.; Oh, H.C.; Noh, H.S.; Ji, J.H.; Kim, S.S. (2006). Metal nanoparticle generation using a small ceramic heater with a local heating area. J. Aerosol. Sci, 37, 1662-1670.
24.    Chen, Y.-H.; Yeh, C.-S. (2002). Laser ablation method: Use of surfactants to form the dispersed Ag nanoparticles. Colloids Surf. A, 197, 133-139.
25.    Raza, M.A.; Kanwal, Z.; Rauf, A.; Sabri, A.N.; Riaz, S.; Naseem, S. (2016). Size-and shape-dependent antibacterial studies of silver Nanoparticles synthesized by wet chemical routes. Nanomaterials, 6, 74.
26.    Nishanthi, R.; Malathi, S.; Palani, P. (2019). Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Mater. Sci. Eng. C, 96, 693-707.
27.    Kinnear, C.; Moore, T.L.; Rodriguez-Lorenzo, L.; Rothen-Rutishauser, B.; Petri-Fink, A. (2017). Form follows function: Nanoparticle shape and its implications for nanomedicine. Chem. Rev, 117, 11476-11521.
28.    Pillai, Z.S.; Kamat, P.V. (2004). What factors control the size and shape of silver nanoparticles in the citrate ion Reduction method? J. Phys. Chem. B, 108, 945-951.
29.    Chugh, H.; Sood, D.; Chandra, I.; Tomar, V.; Dhawan, G.; Chandra, R. (2018). Role of gold and silver nanoparticles in cancer nano-medicine. Artif. Cell. Nanomed. Biotechnol, 46, 1210-1220.
30.    Turkevich, J.; Kim, G. Palladium. (1970). Preparation and catalytic properties of particles of uniform size. Science, 169, 873-879.
31.    Turkevich, J. (1985). Colloidal gold. Part I. Gold. Bull, 18, 86-91.
32.    Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun, 801-802.
33.    Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol, 7, 1831.
34.    Evanoff, D.D., Jr.; Chumanov, G. (2005). Synthesis and optical properties of silver nanoparticles and arrays. Chem.Phys. Chem, 6, 1221-1231.
35.    Goulet, P.J.G.; Lennox, R.B. (2010). New insights into Brust-Schiffrin metal nanoparticle synthesis. J. Am. Chem. Soc, 132, 9582-9584.
36.    Oliveira, M.M.; Ugarte, D.; Zanchet, D.; Zarbina, A.J.G. (2005). Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J. Colloid Interface Sci, 292, 429-435.
37.    Rauwel, P.; Küünal, S.; Ferdov, S.; Rauwel, E. (2015). A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv. Mater. Sci. Eng, 1-9.
38.    T. Klaus, R. Joerger, E. Olsson and C.G. Granqvist. (1999). Proc. Natl. Acad. Sci. USA, 96,13611.
39.    D. Schuler and R.B. Frankel. (1999). Appl. Microbiol. Biotechnol, 52, 464.
40.    M. Kowshik, S. Ashtaputre, S. Kharrazi, W. Vogel, J. Urban and S.K. Kulkarni. (3003). Nanotechnol, 14, 95.
41.    Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C. (2007). Biosynthesis of silver and Gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18, 105104-105115.
42.    Shankar SS, Rai A, Ahmad A, sastry MJ. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275, 496-502.
43.    Jain, D., Kumar Daima, S., Kachhwaha, S and Kothari, S.L. (2009). Synthesis of plant mediated silver nanoparticles using Papaya Fruit Extract and Evaluation of their Antimicrobial Activities. Digest Journal of Nanomaterials and Biostructures, 4(3), 557-56.
44.    Leela A. and Vivekanandan M. (2008). Tapping the unexploited plant resources for the synthesis of silver nanoparticles. African Journal of Biotechnology, 7, 3162-3165.
45.    Daizy Philip. (2009). Spectrochimica. Acta. A, 73,374.
46.    Govindraju, K., Kiruthiga, V., Ganesh Kumar, V and Singaravelu, G. (2009). Extracellular synthesis of silver nanoparticles by A marine alga, Sargassum wightii Grevilli and their antibacterial effects. Journal of Nanoscience and Nanotechnology, 9, 5497-5501.
47.    Lee, S.J.; Morrill, A.R.; Moskovits, M. (2006). Hot spots in silver nanowire bundles for Surface-enhanced raman Spectroscopy. J. Am. Chem. Soc, 128, 2200-2201.
48.    Kneipp, J.; Kneipp, H.; McLaughlin, M.; Brown, D.; Kneipp, K. (2006). In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett, 6, 2225-2231.
49.    Camden, J.P.; Dieringer, J.A.; Wang, Y.; Masiello, D.J.; Marks, L.D.; Schatz, G.C.; Duyne, R.P.V. (2008). Probing the structure of single-molecule surface-enhanced raman scattering hot spots. J. Am. Chem. Soc., 130,12616-12617.
50.    Kleinman, S.L.; Frontiera, R.R.; Henry, A.-I.; Dieringer, J.A.; Duyne, R.P.V. (2013). Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys., 15, 21-36.
51.    Chen, H.-Y.; Lin, M.-H.; Wang, C.-Y.; Chang, Y.-M.; Gwo, S. (2015). Large-scale hot spot engineering for quantitative SERS at the single-molecule scale. J. Am. Chem. Soc, 137, 13698-13705.
52.    Sun, H.-B.; Fu, C.; Xia, Y.-J.; Zhang, C.-W.; Du, J.-H.; Yang, W.-C.; Guo, P.-F.; Xu, J.-Q.; Wang, C.-L.; Jia, Y.-L. (2017). Enhanced Raman scattering of graphene by silver nanoparticles with different densities and locations. Mater. Res. Express, 4, 025012.
53.    Loo, C.; Lowery, A.; Halas, N.; West, J.; Drezek, R. (2005). Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett, 5, 709-711.
54.    Kang, H.; Jeong, S.; Park, Y.; Yim, J.; Jun, B.-H.; Kyeong, S.; Yang, J.-K.; Kim, G.; Hong, S.; Lee, L.P.; et al. (2013). Near-infrared SERS nanoprobes with plasmonic Au/Ag hollow-shell assemblies for in vivo multiplex detection. Adv. Funct. Mater, 23, 3719-3727.
55.    Kelkar, S.S.; Reineke, T.M. (2011). Theranostics: Combining imaging and therapy. Bioconjug. Chem, 22, 1879-1903.
56.    Jun, B.H.; Noh, M.S.; Kim, J.; Kim, G.; Kang, H.; Kim, M.S.; Seo, Y.T.; Baek, J.; Kim, J.H.; Park, J.; et al. (2010). Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small, 6, 119-125.
57.    Liu, J.; Wang, Z.; Liu, F.D.; Kane, A.B.; Hurt, R.H. (2012). Chemical transformations of nanosilver in biological environment. ACS Nano, 6, 9887-9899.
58.    Zhou, W.; Ma, Y.; Yang, H.; Ding, Y.; Luo, X. (2011). A label-free biosensor based on silver nanoparticles array for clinical detection of serum p53 in head and neck squamous cell carcinoma. Int. J. Nanomed, 6, 381-386.
59.    Zhang, F.; Braun, G.B.; Shi, Y.; Zhang, Y.; Sun, X.; Reich, N.O.; Zhao, D.; Stucky, G. (2010). Fabrication of Ag@SiO2@Y2O3:Er nanostructures for bioimaging: Tuning of the upconversion fluorescence with silver nanoparticles. J. Am. Chem. Soc, 132, 2850-2851.
60.    Yen, C.-W.; de Puig, H.; Tam, J.; Gómez-Márquez, J.; Bosch, I.; Hamad-Schifferli, K.; Gehrkea, L. (2015). Multicolored silver nanoparticles for multiplexed disease diagnostics: Distinguishing dengue, yellow fever, and Ebola viruses. Lab Chip, 15, 1638-1641.
61.    Bala, V.; Peria, k.; Prakash, k.; Muthupandi, K.; Rajan, A. (2017). Nanosilver for selective and sensitive sensing of Saturnism. Sens. Actuators B, 241, 814-820.
62.    Dragan, A.I.; Bishop, E.S.; Casas-Finet, J.R.; Strouse, R.J.; McGivney, J.; Schenerman, M.A.; Geddes, C.D. (2012). Distance dependence of metal-enhanced fluorescence. Plasmonics, 7, 739-744.
63.    Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Lakowicz, J.R.; Geddes, C.D. (2005). Metal-enhanced fluorescence: An emerging tool in biotechnology. Curr. Opin. Biotechnol, 16, 55-62.
64.    Abou El-Nour K, Eftaiha A, Al-Warthan A, et al. (2010). Synthesis and applications of silver nanoparticles. Arabian J Chem, 3, 135-140.
65.    Chung IM, Park I, Seung-Hyun K, et al. (2016). Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett. 11:40.
66.    Abbasi E, Milani M, Fekri Aval S, et al. (2016). Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol, 42, 173-180.
67.    Triyana, J.K.; Suharyadi, H.E. (2017). High-performance silver nanowire film on flexible substrate prepared by Meyer-rod coating. Mater. Sci. Eng., 202, 012055.
68.    Pham, X.-H.; Hahm, E.; Kim, T.H.; Kim, H.-M.; Lee, S.H.; Lee, Y.-S.; Jeong, D.H.; Jun, B.-H. (2018). Enzyme-catalysed Ag growth on Au nanoparticle-assembled structure for highly sensitive colorimetric immunoassay. Sci. Rep, 8, 6290.
69.    Prosposito, P.; Mochi, F.; Ciotta, E.; Casalboni, M.; Matteis, F.D.; Venditti, I.; Fontana, L.; Testa, G.; Fratoddi, I. (2016). Hydrophilic silver nanoparticles with tunable optical properties: Application for the detection of heavy metals in water. Beilstein. J. Nanotechnol, 7, 1654-1661.
70.    Hu, B.; Wang, N.; Hana, L.; Chen, M.-L.; Wang, J.-H. (2015). Core-shell-shell nanorods for controlled release of silver that can serve as a nanoheater for photothermal treatment on bacteria. Acta Biomater, 11, 511-519.
71.    Kamimura, S.; Yamashita, S.; Abe, S.; Tsubota, T.; Ohno, T. (2017). Effect of core@shell (Au@Ag) nanostructure on surface plasmon-induced photocatalytic activity under visible light irradiation. Appl. Catal. B Environ, 211, 11-17.
72.    Atwater, H.A.; Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nat. Mater, 9, 205-213.
73.    Angelis, F.D.; Das, G.; Candeloro, P.; Patrini, M.; Galli, M.; Bek, A.; Lazzarino, M.; Maksymov, I.; Liberale, C.; Andreani, L.C.; et al. (2009). Nanoscale chemical mapping using three-dimensional adiabatic compression of surface Plasmon polaritons. Nat. Nanotechnol, 5, 67-72.
74.    Chen, X.; Jia, B.; Saha, J.K.; Cai, B.; Stokes, N.; Qiao, Q.; Wang, Y.; Shi, Z.; Gu, M. (2012). Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Lett, 12, 2187-2192.
75.    Rho, W.-Y.; Chun, M.-H.; Kim, H.-S.; Kim, H.-M.; Suh, J.S.; Jun, B.-H. (2016). Ag nanoparticle-functionalized open-ended freestanding TiO2 nanotube arrays with a scattering layer for improved energy conversion efficiency in dye-sensitized solar cells. Nanomaterials, 6, 117.
76.    Kim, H.-S.; Chun, M.-H.; Suh, J.S.; Jun, B.-H.; Rho, W.-Y. (2017). Dual functionalized freestanding TiO2 nanotube arrays coated with Ag nanoparticles and carbon materials for dye-sensitized solar cells. Appl. Sci, 7, 576.
77.    Rho, W.-Y.; Kim, H.-S.; Lee, S.H.; Jung, S.; Suh, J.S.; Hahn, Y.-B.; Jun, B.-H. (2014). Front-illuminated dye-sensitized solar cells with Ag nanoparticle-functionalized freestanding TiO2 nanotube arrays. Chem. Phys. Lett, 614, 78-81.
78.    Choi, H.; Ko, S.-J.; Choi, Y.; Joo, P.; Kim, T.; Lee, B.R.; Jung, J.-W.; Choi, H.J.; Cha, M.; Jeong, J.-R.; et al. (2013). Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat. Photonics, 7, 732-738.
79.    Gaillet S, Rouanet JM. (2015). Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms – a review. Food Chem Toxicol, 77, 58-63.
80.    Cha K, Hong HW, Choi YG, et al. (2008). Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett, 30, 1893-1899.
81.    Havarinasab S, Pollard KM, Hultman P. (2009). Gold- and silver-induced murine autoimmunity -requirement for cytokines and CD28 in murine heavy metal-induced autoimmunity. Clin Exp Immunol, 155, 567-576.
82.    Van der Zande M, Vandebriel RJ, Van Doren E, et al. (2012). Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano, 6, 7427-7442.
83.    Hadrup N, Lam HR. (2014). Oral toxicity of silver ions, silver nanoparticles and colloidal silver–a review. Regul Toxicol Pharmacol, 68, 1-7.
84.    Mirsattari SM, Hammond RR, Sharpe MD, et al. (2004). Myoclonic status epilepticus following repeated oral ingestion of colloidal silver. Neurology, 62, 1408-1410.
85.    Ema M, Okuda H, Gamo M, et al. (2017). A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod Toxicol, 67, 149-164.
86.    McGillicuddy E, Murray I, Kavanagh S, et al. (2017). Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci. Total Environ, 575, 231-246.

Recomonded Articles:

Author(s): K Kumaresn, D Parthiban, V Sivanarayan, N Arun, P Kumaravel.

DOI: 10.5958/2321-5836.2015.00012.9         Access: Open Access Read More

Author(s): D Saha, D Mridha, S Beura.

DOI: Not Available         Access: Open Access Read More

Author(s): Ishan Panchal, B Panigrahi, CN Patel.

DOI: Not Available         Access: Open Access Read More

Author(s): Dipak. B. Sonanwane, Anas M. Shah, Neha jaiswal

DOI: 10.52711/2321-5836.2022.00020         Access: Closed Access Read More

Author(s): Varsha S. Marathe, Akanksha P. Nikum, Gautam S. Marathe, Sulbha G. Patil

DOI: 10.52711/2321-5836.2023.00017         Access: Closed Access Read More


Recent Articles




Tags