Author(s): Dyuthi H Y, U Rajashekhar

Email(s): dyuthi81977@gmail.com

DOI: 10.52711/2321-5836.2024.00038   

Address: Dyuthi H Y*, U Rajashekhar
Department of Pharmacology, Karnataka College of Pharmacy, Bengaluru - 560064, Karnataka, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 3,     Year - 2024


ABSTRACT:
A neurodegenerative condition called Alzheimer's disease (AD) impairs neurocognitive function and hinders the growth of mental ability. This neuropathological condition presents with neurodegeneration, neuronal loss, and the development of neurofibrillary tangles and Ab plaques. Dementia, neuronal loss, and the development of neurofibrillary tangles and Ab plaques are the hallmarks of this neuropathological disorder. Such a medication is not able to cure Alzheimer's disease. The drug that's now available just treats symptoms. Two major obstacles to research are the blood-brain barrier, which reduces the effectiveness of treatments, and the incomplete comprehension of the ethology of Alzheimer's disease. Stem cell-based therapy has been seen as a novel, reliable and successful restoration technique to treat AD since the condition is complex and has not gotten much attention. The latest advances in nanotechnology occasionally offer proactive treatment chances that can help get over limitations. In this overview, we concentrate on the causes of AD and the various methods used to treat them.


Cite this article:
Dyuthi H Y, U Rajashekhar. Alzheimer’s Disease: An Outline of Therapeutic Interventions by different Approaches. Research Journal of Pharmacology and Pharmacodynamics.2024;16(3):226-2. doi: 10.52711/2321-5836.2024.00038

Cite(Electronic):
Dyuthi H Y, U Rajashekhar. Alzheimer’s Disease: An Outline of Therapeutic Interventions by different Approaches. Research Journal of Pharmacology and Pharmacodynamics.2024;16(3):226-2. doi: 10.52711/2321-5836.2024.00038   Available on: https://rjppd.org/AbstractView.aspx?PID=2024-16-3-15


REFRENCES:
1.    Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement [Internet]. 2013;9(1):63. Available from: http://dx.doi.org/10.1016/j.jalz.2012.11.007
2.    Sonkusare SK, Kaul CL, Ramarao P. Dementia of Alzheimer’s disease and other neurodegenerative disorders-memantine, a new hope. Pharmacological Research. 2005; 51(1):1–7.
3.    Xu T-H, Yan Y, Kang Y, Jiang Y, Melcher K, Xu HE. Alzheimer’s disease-associated mutations increase amyloid precursor protein resistance to γ-secretase cleavage and the Aβ42/Aβ40 ratio. Cell Discov [Internet]. 2016; 2(1): 16026. Available from: http://dx.doi.org/10.1038/celldisc.2016.26
4.    Naylor MD, Karlawish JH, Arnold SE, Khachaturian AS, Khachaturian ZS, Lee VM-Y, et al. Advancing Alzheimer’s disease diagnosis, treatment, and care: recommendations from the Ware Invitational Summit. Alzheimers Dement [Internet]. 2012;8(5):445–52. Available from: http://dx.doi.org/10.1016/j.jalz.2012.08.001
5.    Yang Y, Van Giau V, An SSA, Kim S. Erratum: Plasma oligomeric beta amyloid in Alzheimer’s disease with history of agent orange exposure. Dement Neurocognitive Disord [Internet]. 2023;22(2):84. Available from: http://dx.doi.org/10.12779/dnd.2023.22.2.84
6.    Alzheimer's Association. 2019 Alzheimer's disease facts and figures. Alzheimer's & dementia. 2019 Mar;15(3):321-87.
7.    Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. 1984. Biochem Biophys Res Commun [Internet]. 2012;425(3):534–9. Available from: http://dx.doi.org/10.1016/j.bbrc.2012.08.020
8.    Matthews FE, Arthur A, Barnes LE, Bond J, Jagger C, Robinson L, et al. A two-decade comparison of prevalence of dementia in individuals aged 65 years and older from three geographical areas of England: results of the Cognitive Function and Ageing Study I and II. Lancet [Internet]. 2013;382(9902):1405–12. Available from: http://dx.doi.org/10.1016/S0140-6736(13)61570-6
9.    Nagy ZS, Esiri MM, Jobst KA, Johnston C, Litchfield S, Sim E, et al. Influence of the apolipoprotein E genotype on amyloid deposition and neurofibrillary tangle formation in Alzheimer’s disease. Neuroscience. Defina PA, Moser RS, Glenn M, Lichtenstein JD, Fellus J, editors. J Aging Res. 1995;69(3).
10.    Mattson MP. Molecular and cellular pathways towards and away from Alzheimer’s disease. In: Alzheimer: 100 Years and Beyond. Berlin, Heidelberg: Springer Berlin Heidelberg; 2006. p. 371–5.
11.    Wang J, Gu BJ, Masters CL, Wang Y-J. A systemic view of Alzheimer disease — insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol [Internet]. 2017;13(10):612–23. Available from: http://dx.doi.org/10.1038/nrneurol.2017.111
12.    Solomon A, Mangialasche F, Richard E, Andrieu S, Bennett DA, Breteler M, et al. Advances in the prevention of Alzheimer’s disease and dementia. J Intern Med [Internet]. 2014;275(3):229–50. Available from: http://dx.doi.org/10.1111/joim.12178
13.    P.A. Defina, R.S. Moser, M. Glenn, J.D. Lichtenstein, J. Fellus, Alzheimer’s disease clinical and research update for health care practitioners, J. Aging Res. 2013 (2013).
14.    Soria Lopez JA, Gonzalez HM, Leger GC. Chapter 13 - Alzheimer’s disease. Handbook of Clinical Neurology. 2019; 167:231–55.
15.    Naylor MD, Karlawish JH, Arnold SE, Khachaturian AS, Khachaturian ZS, Lee VM-Y, et al. Advancing Alzheimer’s disease diagnosis, treatment, and care: recommendations from the Ware Invitational Summit. Alzheimers Dement [Internet]. 2012;8(5):445–52. Available from: http://dx.doi.org/10.1016/j.jalz.2012.08.001
16.    Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement [Internet]. 2016;12(6):733–48. Available from: http://dx.doi.org/10.1016/j.jalz.2016.01.012
17.    Grothe MJ, Sepulcre J, Gonzalez-Escamilla G, Jelistratova I, Schöll M, Hansson O, et al. Molecular properties underlying regional vulnerability to Alzheimer’s disease pathology. Brain [Internet]. 2018; Available from: http://dx.doi.org/10.1093/brain/awy189
18.    Jeong S. Molecular and cellular basis of neurodegeneration in Alzheimer’s disease. Mol Cells [Internet]. 2017;40(9):613–20. Available from: http://dx.doi.org/10.14348/molcells.2017.0096
19.    Paroni G, Bisceglia P, Seripa D. Understanding the amyloid hypothesis in Alzheimer’s disease. J Alzheimers Dis [Internet]. 2019;68(2):493–510. Available from: http://dx.doi.org/10.3233/JAD-180802
20.    Salehi A, Delcroix J-D, Swaab DF. Alzheimer’s disease and NGF signaling. J Neural Transm (Vienna) [Internet]. 2004;111(3):323–45. Available from: http://dx.doi.org/10.1007/s00702-003-0091-x
21.    Sigurdsson EM, Knudsen E, Asuni A, Fitzer-Attas C, Sage D, Quartermain D, et al. An attenuated immune response is sufficient to enhance cognition in an Alzheimer’s disease mouse model immunized with amyloid-β derivatives. Journal of Neuroscience. 2004;24(28):6277–82.
22.    Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med [Internet]. 2016;18(5):421–30. Available from: http://dx.doi.org/10.1038/gim.2015.117
23.    Khanahmadi M, Farhud DD, Malmir M. GeneticofAlzheimer’s disease: A narrative review article. Iran J Public Health. 2015; 44:892–901.
24.    Tcw J, Goate AM. Genetics of beta-Amyloid precursor protein in Alzheimer’s disease. Cold Spring Harb. Perspect. 2017.
25.    Bi C, Bi S, Li B. Processing of mutant beta-amyloid precursor protein and the clinicopathological features of familial Alzheimer’s disease. Aging Dis. 2019; 10:383–403.
26.    Dai M-H, Zheng H, Zeng L-D, Zhang Y. The genes associated with early-onset Alzheimer’s disease. Oncotarget [Internet]. 2018;9(19):15132–43. Available from: http://dx.doi.org/10.18632/oncotarget.23738
27.    Zhao J, Liu X, Xia W, Zhang Y, Wang C. Targeting amyloidogenic processing   of APP in Alzheimer’s disease. Front Mol Neurosci [Internet]. 2020; 13:137. Available from: http://dx.doi.org/10.3389/fnmol.2020.00137
28.    Singleton AB, Hall R, Ballard CG, Perry RH, Xuereb JH, Rubinsztein DC. Pathology of early onset Alzheimer’s disease cases bearing the Thr113-114ins presenilin-1 mutation. Brain. 2000;123(12):2467–74.
29.    Cruts M, van Duijn CM, Backhovens H, Van den Broeck M, Wehnert A, Serneels S, et al. Estimation of the genetic contribution of presenilin-1 and -2 mutations in a population-based study of presenile Alzheimer disease. Hum Mol Genet [Internet]. 1998;7(1):43–51. Available from: http://dx.doi.org/10.1093/hmg/7.1.43
30.    Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, et al. Familial Alzheimer’s disease–linked presenilin 1 variant elevate Aβ1–42/1–40 ratio in vitro and in vivo. Neuron [Internet]. 1996;17(5):1005–13. Available from: http://dx.doi.org/10.1016/s0896-6273(00)80230-5
31.    Liao F, Yoon H, Kim J. Apolipoprotein E metabolism and functions in brain and its role in Alzheimer’s disease. Curr Opin Lipidol [Internet]. 2017;28(1):60–7. Available from: http://dx.doi.org/10.1097/MOL.0000000000000383
32.    Liu C-C, Kanekiyo T, Xu H, Bu G. Correction: Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol [Internet]. 2013;9(4):184–184. Available from: http://dx.doi.org/10.1038/nrneurol.2013.32
33.    Alzheimer A. Uber eine eigenartige Erkrankung der Hirnridne. Allg Z Psychiatr. 1907; 64:146–8.
34.    Young J, Campolim C, Aydogan A, Chung B, Choi A, Yang WM, et al. LRP1 in GABAergic neurons is a key link between obesity and memory function.
35.    Boutajangout A, Wisniewski T. Tau-based therapeutic approaches for Alzheimer’s disease-a mini-review. Gerontology. 2014;60(5):381–5.
36.    Bisht K, Sharma K, Tremblay M-È. Chronic stress as a risk factor for Alzheimer’s disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol Stress [Internet]. 2018; 9:9–21. Available from: http://dx.doi.org/10.1016/j.ynstr.2018.05.003
37.    Korolev IO. Alzheimer’s disease: a clinical and basic science review. Medical Student Research Journal. 2014;4(1):24–33.
38.    Pillai JA, Bonner-Jackson A, Bekris LM, Safar J, Bena J, Leverenz JB. Highly elevated cerebrospinal fluid total tau level reflects higher likeli hood of non-amnestic subtype of Alzheimer’s disease. J Alzheimers Dis. 2019; 70:1051–8.
39.    Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet [Internet]. 2020;396(10248):413–46. Available from: http://dx.doi.org/10.1016/S0140-6736(20)30367-6
40.    McShane R, Westby MJ, Roberts E, Minakaran N, Schneider L, Farrimond LE, et al. Memantine for dementia. Cochrane Database Syst Rev [Internet]. 2019;3:CD003154. Available from: http://dx.doi.org/10.1002/14651858.CD003154.pub6
41.    Santos MA, Chand K, Chaves S. Recent progress in multifunctional metal chelators as potential drugs for Alzheimer’s disease. Coord Chem Rev [Internet]. 2016;327–328:287–303. Available from: http://dx.doi.org/10.1016/j.ccr.2016.04.013
42.    Klatte ET, Scharre DW, Nagaraja HN, Davis RA, Beversdorf DQ, Atri A. Long-term course and effectiveness of combination therapy in Alzheimer’s disease. Alzheimer disease and associated disorders. 2003;17.
43.    Kabir MT, Uddin MS, Mamun AA, Jeandet P, Aleya L, Mansouri RA, et al. Combination drug therapy for the management of Alzheimer’s disease. Int J Mol Sci [Internet]. 2020;21(9):3272. Available from: http://dx.doi.org/10.3390/ijms21093272
44.    Gazit N, Vertkin I, Shapira I, Helm M, Slomowitz E, Sheiba M, et al. IGF-1 receptor differentially regulates spontaneous and evoked transmission via mitochondria at hippocampal synapses. Neuron [Internet]. 2016;89(3):583–97. Available from: http://dx.doi.org/10.1016/j.neuron.2015.12.034
45.    Farr SA, Ripley JL, Sultana R, Zhang Z, Niehoff ML, Platt TL, et al. Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease. Free Radic Biol Med [Internet]. 2014; 67:387–95. Available from: http://dx.doi.org/10.1016/j.freeradbiomed.2013.11.014
46.    Gellad WF, Kesselheim S. Accelerated approval and expensive drugs- a challenging combination. The New England Journal of Medicine. 2017;376(21).
47.    Johnson ECB, Dammer EB, Duong D, Yin L, Thambisetty M, Troncoso JC, et al. P2-218: Deep proteomic network analysis of Alzheimer’s disease brain reveals alterations in RNA binding proteins and RNA splicing associated with disease. Alzheimers Dement [Internet]. 2019;15(7): P660–1. Available from: http://dx.doi.org/10.1016/j.jalz.2019.06.2625
48.    Ojo JO, Crynen G, Reed JM. Unbiased proteomic approach identifies unique and coincidental plasma bio markers in repetitive mTBI and AD pathogenesis. Frontiers in Aging Neuroscience. 2018;10.
49.    Q. Zhang, H.-h. Wu, Y. Wang, G.-j. Gu, W. Zhang, R. Xia, Neural stem cell      transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer’s disease, J. Neurochem. 136 (2016) 815e825.
50.    Martinez-Morales PL, Revilla A, Ocana I, Gonzalez C, Sainz P, Mcguire D, et al. Progress in stem cell therapy for major human neurological disorders. Stem Cell Reviews and Reports. 2013; 9:685-e699.
51.    Shroff G. A review on stem cell therapy for multiple sclerosis: special focus on human embryonic stem cells, Stem Cell. Stem Cell Clon Adv Appl. 2018;11.
52.    B. Yu, H. Ma, L. Kong, Y. Shi, Y. Liu, Enhanced connexin 43 expression following neural stem cell transplantation in a rat model of traumatic brain injury, Arch. Med. Sci.: AMS 9 (2013) 132.
53.    Kim SU, Lee HJ, Kim YB. Neural stem cell-based treatment for neurode generative diseases. Neuropathology. 2013; 33:491-e504.
54.    Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Muller F-J, Loring JF, et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease, Proc. Proc Natl Acad Sci Unit States Am. 2009;106:13594-e13599.
55.    Ager RR, Davis JL, Agazaryan A, Benavente F, Poon WW, LaFerla FM, et al. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss: Human NSCS Improve Cognition in Alzheimer’s Mice. Hippocampus [Internet]. 2015;25(7):813–26. Available from: http://dx.doi.org/10.1002/hipo.22405
56.    Xuan AG, Luo M, Ji WD, Long DH. Effects of engrafted neural stem cells in Alzheimer’s disease rats. Neurosci Lett [Internet]. 2009;450(2):167–71. Available from: http://dx.doi.org/10.1016/j.neulet.2008.12.001
57.    Fouad GI. Stem cells as a promising therapeutic approach for Alzheimer’s disease: a review. Bull Natl Res Cent [Internet]. 2019;43(1). Available from: http://dx.doi.org/10.1186/s42269-019-0078-x
58.    Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of trans differentiation and modes of tissue repair current views. Stem Cell. 2007; 25:2896-e2902.
59.    Oh SH, Kim HN, Park H-J, Shin JY, Lee PH. Mesenchymal stem cells in crease hippocampal neurogenesis and neuronal differentiation by enhancing the Wntsignaling pathway in an Alzheimer’s disease model. Cell Transplant. 2015; 24:1097-e1109.
60.    Liras A. Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects. J Transl Med [Internet]. 2010;8(1):131. Available from: http://dx.doi.org/10.1186/1479-5876-8-131
61.    Paull D, Sevilla A, Zhou H, Hahn AK, Kim H, Napolitano C, et al. Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nat Methods [Internet]. 2015;12(9):885–92. Available from: http://dx.doi.org/10.1038/nmeth.3507
62.    Holtman IR, Raj DD, Miller JA, Schaafsma W, Yin Z, Brouwer N, et al. Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis. Acta Neuropathol Commun [Internet]. 2015;3(1):31. Available from: http://dx.doi.org/10.1186/s40478-015-0203-5
63.    Raja WK, Mungenast AE, Lin Y-T, Ko T, Abdurrob F, Seo J, et al. Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s disease phenotypes. PLoS One [Internet]. 2016;11(9):e0161969. Available from: http://dx.doi.org/10.1371/journal.pone.0161969
64.    Arber C, Toombs J, Lovejoy C, Ryan NS, Paterson RW, Willumsen N, et al. Familial Alzheimer’s disease patient-derived neurons reveal distinct mutation-specific effects on amyloid beta. Mol Psychiatry. Mol Psychiatry. 2019;
65.    Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and dysfunction of the blood-brain barrier. Cell [Internet]. 2015;163(5):1064–78. Available from: http://dx.doi.org/10.1016/j.cell.2015.10.067
66.    Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci [Internet]. 2011;12(12):723–38. Available from: http://dx.doi.org/10.1038/nrn3114
67.    Sood S, Jain K, Gowthamarajan K. Intranasal therapeutic strategies for management of Alzheimer’s disease. J Drug Target [Internet]. 2014;22(4):279–94. Available from: http://dx.doi.org/10.3109/1061186X.2013.876644




Recomonded Articles:

Author(s): Dipsundar Sahu, Shakti Bhushan, Debajyoti Das, Saroj Kumar Debnath, Laxmidhar Barik, Vandana Meena, Vikas Singh, Amit Kumar Dixit, PVV Prasad

DOI: 10.52711/2321-5836.2021.00015         Access: Open Access Read More

Author(s): Jayanth P. C. , Prasanna Kumar Kar, M. Niranjan Babu

DOI: 10.5958/2321-5836.2016.00020.3         Access: Open Access Read More

Author(s): Sudhakar P, Poorana Pushkalai S, Sabarinath C, Priyadharshini S, Haripriya S

DOI: 10.5958/2321-5836.2018.00002.2         Access: Open Access Read More

Author(s): Jhakeshwar Prasad, Ashish Kumar Netam, Ritika Singh, Manisha Sahu, Trilochan Satapathy, S. Prakash Rao, Purnima Baghel, Mahendra Kumar Sahu

DOI: 10.5958/2321-5836.2019.00009.0         Access: Open Access Read More

Author(s): B Sangamewaran, Manmeet Singh Saluja, Ajay Sharma, Chetan Dubey.

DOI: Not Available         Access: Open Access Read More

Author(s): Ganesh G. Dhakad, Sangita P. Shirsat, Kaveri P. Tambe

DOI: 10.52711/2321-5836.2022.00008         Access: Open Access Read More

Author(s): Chirag K Patel, B Panigrahi , R Badmanaban, CN Patel.

DOI: Not Available         Access: Open Access Read More

Author(s): Ishan Panchal, B Panigrahi, CN Patel.

DOI: Not Available         Access: Open Access Read More

Author(s): Pallavi Salve, Rupali Kirtawade, Deepali Gharge, Pandurang Dhabale, Kishor Burade.

DOI: Not Available         Access: Open Access Read More

Author(s): Rupali Kirtawade, Pallavi Salve, Chhotaram Seervi, Anita Kulkarni and Pandurang Dhabale.

DOI: Not Available         Access: Open Access Read More

Author(s): Saudagar RB, Buchake VV, Bachhav RS.

DOI: Not Available         Access: Open Access Read More

Author(s): VV Buchake, AP Muthal, RB Saudagar , RS Bachhav.

DOI: Not Available         Access: Open Access Read More

Author(s): Atoussi Ouidad, Chetehouna Sara, Boulaares Islam, Guemari Imane Yousra, Derouiche Samir

DOI: 10.5958/2321-5836.2021.00001.X         Access: Open Access Read More

Author(s): Varsha S. Marathe, Akanksha P. Nikum, Gautam S. Marathe, Sulbha G. Patil

DOI: 10.52711/2321-5836.2023.00017         Access: Open Access Read More

Author(s): Ganesh G. Dhakad, Bhagyashri O. Fate, Amruta R. Pandav, Abhijit V. Shrirao, N. I. Kochar, A. V. Chandewar

DOI: 10.52711/2321-5836.2023.00016         Access: Open Access Read More

Author(s): Nikunja Kishor Mishra, Amiyakanta Mishra, Rosy Priyadarshini

DOI: 10.52711/2321-5836.2023.00022         Access: Open Access Read More

Author(s): Satya Sai Sri Narava, Sowmya Kucherlapati, Vinod Kumar Mugada, Srinivasa Rao Yarguntla

DOI: 10.52711/2321-5836.2023.00029         Access: Open Access Read More


Recent Articles




Tags