Author(s):
Preeti Chaudhary, Rupesh Pingale, Divya Dongare, Suchitra Elangovan, Sumit Kumkar, Sanjeev Dhumal
Email(s):
preeti.chaudhary@ncrdsip.com
DOI:
10.52711/2321-5836.2025.00034
Address:
Preeti Chaudhary*, Rupesh Pingale, Divya Dongare, Suchitra Elangovan, Sumit Kumkar, Sanjeev Dhumal
NCRD’s Sterling Institute of Pharmacy, Nerul, Navi Mumbai, Maharashtra.
*Corresponding Author
Published In:
Volume - 17,
Issue - 3,
Year - 2025
ABSTRACT:
Rett Syndrome (RTT) is a debilitating neurodevelopmental disorder primarily affecting females, characterized by severe cognitive, motor, and autonomic impairments. The complexity of Rett syndrome and the blood-brain barrier (BBB) significantly limits the effectiveness of conventional treatments. Emerging strategies for targeted drug delivery to the central nervous system (CNS) offer promising avenues for more effective therapies. Among these, the use of Toxoplasma gondii- a neurotropic parasite known for its ability to cross the BBB has garnered attention as a potential vector for targeted drug delivery in RTT. This review explores the potential of Toxoplasma gondii as a novel therapeutic vector for RTT, focusing on its unique biological mechanisms, which enable it to invade and persist within the CNS. The review discusses advancements in genetic engineering that could allow for the safe and controlled delivery of therapeutic agents using this organism. Additionally, the challenges associated with using a live pathogen as a delivery vector, including issues related to safety, immune response, and specificity, are critically examined. Furthermore, the paper highlights the current limitations in preclinical and clinical research, identifies key areas that require further investigation, and proposes future directions for the development of Toxoplasma gondii-based therapies. By assessing both the potential and challenges, this review aims to provide a comprehensive overview of the current state of research and the future possibilities for utilizing Toxoplasma gondii in targeted drug delivery for Rett Syndrome.
Cite this article:
Preeti Chaudhary, Rupesh Pingale, Divya Dongare, Suchitra Elangovan, Sumit Kumkar, Sanjeev Dhumal. Exploring Toxoplasma gondii as a Vector for Targeted Drug Delivery in Rett Syndrome: Potential, Challenges and Future Directions. Research Journal of Pharmacology and Pharmacodynamics.2025;17(3):206-2. doi: 10.52711/2321-5836.2025.00034
Cite(Electronic):
Preeti Chaudhary, Rupesh Pingale, Divya Dongare, Suchitra Elangovan, Sumit Kumkar, Sanjeev Dhumal. Exploring Toxoplasma gondii as a Vector for Targeted Drug Delivery in Rett Syndrome: Potential, Challenges and Future Directions. Research Journal of Pharmacology and Pharmacodynamics.2025;17(3):206-2. doi: 10.52711/2321-5836.2025.00034 Available on: https://rjppd.org/AbstractView.aspx?PID=2025-17-3-9
REFERENCES:
1. Nance, E., Pun, S.H., Saigal, R. Drug delivery to the central nervous system. Nature Reviews Materials. 2022; 7(1): 314–331. https://doi.org/10.1038/s41578-021-00394-w
2. Good KV, Vincent JB, Ausió J. MeCP2: The Genetic Driver of Rett Syndrome Epigenetics. Front Genet. 2021; 12: 620859. doi: 10.3389/fgene.2021.620859. PMID: 33552148; PMCID: PMC7859524.
3. Minnu EM, Joslin J. RETT Syndrome: A Case Report. Research Journal of Science and Technology. 2022; 14(3):161-4.
4. Terstappen, G.C., Meyer, A.H., Bell, R.D. Strategies for delivering therapeutics across the blood–brain barrier. Nature Reviews Drug Discovery. 2021; 20: 362–383. https://doi.org/10.1038/s41573-021-00139-y
5. Kyle SM, Vashi N, Justice MJ. Rett syndrome: a neurological disorder with metabolic components. Open Biol. 2018; 8(2): 170216. doi: 10.1098/rsob.170216. PMID: 29445033; PMCID: PMC5830535.
6. Qudus WJ., Haider SK. The relation of Toxoplasma gondii with Tumor Necrotizing Factor-α in type II Diabetic patients. Research J. Pharm. and Tech. 2019; 12(10): 4817-4821.
7. S Al-Malki E. Toxoplasmosis: stages of the protozoan life cycle and risk assessment in humans and animals for an enhanced awareness and an improved socio-economic status. Saudi J Biol Sci. 2021; 28(1): 962-969. doi: 10.1016/j.sjbs.2020.11.007. Epub 2020 Nov 11. PMID: 33424388; PMCID: PMC7783816.
8. Rita NN. Rammo. Bactericidal and Anti-biofilm Formation of Aqueous Plant Extracts against Pathogenic Bacteria. Asian J. Pharm. Res. 2017; 7(1): 25-29.
9. Kadbhane A.S, Dahikar S.B, Bhutada S.A. Antimicrobial Photodynamic Therapy – A Promising Approach to Control Pathogens and Infectious Skin Diseases. Asian Journal of Research in Pharmaceutical Sciences. 2025; 15(2):147-4.
10. Mendez OA, Koshy AA. Toxoplasma gondii: Entry, association, and physiological influence on the central nervous system. PLoS Pathog. 2017; 13(7): e1006351. doi: 10.1371/journal.ppat.1006351. PMID: 28727854; PMCID: PMC5519211.
11. Singariya P, Mourya KK, Kumar P. Estimation of Antibacterial Efficacy in Alkaloids of Anogeissus rotundifolia an Indigenous Medicinal Plant against Some Pathogenic Micro-organisms. Asian J. Research Chem. 2018; 11(2):432-440.
12. Poulin R. Parasite Manipulation of host behavior: An update and frequently asked questions. Advances in the study of Behavior. 2010; 41: 151-186. https://doi.org/10.1016/S0065-3454(10)41005-0
13. Dubey JP. Toxoplasma Gondii. In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 84. Available from: https://www.ncbi.nlm.nih.gov/books/NBK7752/.
14. English ED, Striepen B. The cat is out of the bag: How parasites know their hosts. PLoS Biol. 2019; 17(9): e3000446. doi: 10.1371/journal.pbio.3000446. PMID: 31487278; PMCID: PMC6748446.
15. Hatam-Nahavandi, K., Calero-Bernal, R., Rahimi, M.T. Toxoplasma gondii infection in domestic and wild felids as public health concerns: a systematic review and meta-analysis. Sci Rep. 2021; 11: 9509. https://doi.org/10.1038/s41598-021-89031-8.
16. Rekha Kumari. Baby Brain or Pregnancy Brain or Momnesia. Int. J. Nur. Edu. and Research. 2019; 7(1): 115-118.
17. Sanchez SG, Besteiro S. The pathogenicity and virulence of Toxoplasma gondii. Virulence. 2021; 12(1): 3095-3114. doi: 10.1080/21505594.2021.2012346. PMID: 34895084; PMCID: PMC8667916.
18. Jones, E. J., Korcsmaros, T., and Carding, S. R. Mechanisms and pathways of Toxoplasma gondii transepithelial migration. Tissue Barriers. 2017; 5(1). https://doi.org/10.1080/21688370.2016.1273865
19. Harris WJ, Asselin MC, Hinz R, Parkes LM, Allan S, Schiessl I, Boutin H, Dickie BR. In vivo methods for imaging blood-brain barrier function and dysfunction. Eur J Nucl Med Mol Imaging. 2023; 50(4): 1051-1083. doi: 10.1007/s00259-022-05997-1. Epub 2022 Nov 28. PMID: 36437425; PMCID: PMC9931809.
20. Namrata Negi. Rett Syndrome. International Journal of Nursing Education and Research. 2023; 11(2):180-2.
21. Schneider CA, Figueroa Velez DX, Orchanian SB, Shallberg LA, Agalliu D, Hunter CA, Gandhi SP, Lodoen MB. Toxoplasma gondii Dissemination in the Brain Is Facilitated by Infiltrating Peripheral Immune Cells. mBio. 2022; 13: e02838-22. https://doi.org/10.1128/mbio.02838-22
22. Ross EC, Olivera GC, Barragan A. Early passage of Toxoplasma gondii across the blood-brain barrier. Trends Parasitol. 2022; 38(6): 450-461. doi: 10.1016/j.pt.2022.02.003. Epub 2022 Feb 25. PMID: 35227615.
23. Jung BK, Pyo KH, Shin KY, Hwang YS, Lim H, Lee SJ, Moon JH, Lee SH, Suh YH, Chai JY, Shin EH. Toxoplasma gondii infection in the brain inhibits neuronal degeneration and learning and memory impairments in a murine model of Alzheimer's disease. PLoS One. 2012; 7(3): e33312. doi: 10.1371/journal.pone.0033312. Epub 2012 Mar 21. PMID: 22470449; PMCID: PMC3310043.
24. Carruthers VB. Armed and dangerous: Toxoplasma gondii uses an arsenal of secretory proteins to infect host cells. Parasitol Int. 1999; 48(1): 1-10. doi: 10.1016/s1383-5769(98)00042-7. PMID: 11269320.
25. Koshy AA, Fouts AE, Lodoen MB, Alkan O, Blau HM, Boothroyd JC. Toxoplasma secreting Cre recombinase for analysis of host-parasite interactions. Nat Methods. 2010; 7(4): 307-9. doi: 10.1038/nmeth.1438. Epub 2010 Mar 7. PMID: 20208532; PMCID: PMC2850821.
26. Bracha S, Johnson HJ, Pranckevicius NA, Catto F, Economides AE, Litvinov S, Hassi K, Rigoli MT, Cheroni C, Bonfanti M, Valenti A, Stucchi S, Attreya S, Ross PD, Walsh D, Malachi N, Livne H, Eshel R, Krupalnik V, Levin D, Cobb S, Koumoutsakos P, Caporale N, Testa G, Aguzzi A, Koshy AA, Sheiner L, Rechavi O. Engineering Toxoplasma gondii secretion systems for intracellular delivery of multiple large therapeutic proteins to neurons. Nat Microbiol. 2024; 9(8): 2051-2072. doi: 10.1038/s41564-024-01750-6. Epub 2024 Jul 29. PMID: 39075233; PMCID: PMC11306108.
27. Narava SSS, Kucherlapati S, Mugada VK, Yarguntla SR. A Review on Rett Syndrome: A Debilitating Neurodevelopmental Disorder. Research Journal of Pharmacology and Pharmacodynamics. 2023; 15(4):159-4.
28. A. Rajeswari, S. Ramesh. Investigations on pharmacological constituent and antimicrobial efficacy of plant diffusate against clinical pathogens. Research J. Pharm. and Tech. 5(12): Dec. 2012; Page 1518-1524.
29. Sreeja. M.K, Gowrishankar N.L, Adisha. S, Divya. K.C. Antibiotic Resistance-Reasons and the Most Common Resistant Pathogens – A Review. Research J. Pharm. and Tech. 2017; 10(6): 1886-1890.
30. Matta, S.K., Rinkenberger, N., Dunay, I.R. Toxoplasma gondii infection and its implications within the central nervous system. Nat Rev Microbiol. 2021; 19: 467–480. https://doi.org/10.1038/s41579-021-00518-7
31. Oliveira FMS, Cruz RE, Pinheiro GRG, Caliari MV. Comorbidities involving parasitic diseases: A look at the benefits and complications. Exp Biol Med (Maywood). 2022; 247(20): 1819-1826. doi: 10.1177/15353702221108387. Epub 2022 Jul 23. PMID: 35876147; PMCID: PMC9679356.
32. Wu Y, Duffey M, Alex SE, Suarez-Reyes C, Clark EH, Weatherhead JE. The role of helminths in the development of non-communicable diseases. Front Immunol. 2022; 13: 941977. doi: 10.3389/fimmu.2022.941977. PMID: 36119098; PMCID: PMC9473640.