Author(s): Madhu Bala, Sapna, Mohit Dogra, Harsh Sharma, Savita

Email(s): immadhu456@gmail.com

DOI: 10.52711/2321-5836.2025.00038   

Address: Madhu Bala*, Sapna, Mohit Dogra, Harsh Sharma, Savita
Department of Pharmaceutics, Himachal Institute of Pharmaceutical Education and Research, Bela, Nadaun, Himachal Pradesh 177033.
*Corresponding Author

Published In:   Volume - 17,      Issue - 3,     Year - 2025


ABSTRACT:
In biology, the terms "in vivo" and "in vitro" are more frequently used, while "in silico" denotes computer-based testing. The rapidly developing field of computational pharmacology, also known as in silico pharmacology or computational therapeutics, involves the development of software-based methods for collecting, analysing, and synthesizing biological and medical data from a wide range of sources. Software-based methods, database building, homology models and other molecular modelling, QSARs (quantitative structure–activity relationships), similarity searching, pharmacophores, machine learning, data mining, network analysis, and data analysis tools are all part of "in silico pharmacology." Structure-based design is one of the earlier techniques in drug design. Medicinal targets are frequently important substances that are a component of a certain metabolic or signalling pathway that is thought to be linked to a certain disease state. In ligand-based methods, the information provided by discovered inhibitors for the target receptor is utilized.


Cite this article:
Madhu Bala, Sapna, Mohit Dogra, Harsh Sharma, Savita. In-Silico Pharmacology, Methods and Applications for Drug Design and Discovery: A Review. Research Journal of Pharmacology and Pharmacodynamics.2025;17(3):235-0. doi: 10.52711/2321-5836.2025.00038

Cite(Electronic):
Madhu Bala, Sapna, Mohit Dogra, Harsh Sharma, Savita. In-Silico Pharmacology, Methods and Applications for Drug Design and Discovery: A Review. Research Journal of Pharmacology and Pharmacodynamics.2025;17(3):235-0. doi: 10.52711/2321-5836.2025.00038   Available on: https://rjppd.org/AbstractView.aspx?PID=2025-17-3-13


REFERENCES:
1.    Ahlberg C. Visual exploration of HTS databases: bridging the gap between chemistry and biology. Drug Discovery Today. 1999; 4:370-376. 
2.    Akamatsu M. Current state and perspectives of 3D-QSAR. Top Med Chem. 2002; 2: 1381-1394
3.    Albert A. Relations between molecular structure and biological activity: stages in the evolution of current concept. Ann Rev Pharmocol. 1971; 11: 13-36.
4.    Chohan KK, Paine SW, Waters NJ. Quantitative structure activity relationships in drug metabolism. Curr Top Med Chem. 2006; 6: 1569-1578.
5.    Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (Combat). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc. 1988; 110:5959-5967.
6.    Verstappen G, Reggiani A. In-silico research in drug discovery. Trends in Pharmacological Sciences. 2001; 22(1): 23-26.
7.    M.A. Mehmood, U. Shearman. Ahmad Use of bioinformatics tools in different spheres of life sciences J Data Min Genome Proteonomics. 2014; 5(2); 1 
8.    DiMasi JA., Hansen Row, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ. 2003; 22: 151-185.
9.    Wong C.H., Siah K.W., LoA, W. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA. 2020; 323; 844-853. 
10.    DiMasi J.A., Grabowski H.G., Hansen R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ. 2016; 47: 20–33. 
11.    DiMasi J.A., Hansen R.W., Grabowski H.G. The price of innovation: New estimates of drug development costs. J. Health Econ. 2003; 22: 151–185. 
12.    Paul S.M., Matulka D.S., Dunwiddie C.T., Persinger C.C., Munos B.H., Lindborg S.R., Schacht A.L. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Disco. 2010; 9: 203–214. 
13.    Yang Y., Adelstein S.J., Kassis A.I. Target discovery from data mining approaches. Drug Disco. Today. 2009; 14: 147–154. 
14.    Moffat J.G., Rudolph J., Bailey D. Phenotypic screening in cancer drug discovery—Past, present and future. Nat. Rev. Drug Disco. 2014; 13: 588–602.
15.    Hart C.P. Finding the target after screening the phenotype. Drug Disco. Today. 2005; 10: 513–519. Doi: 10.1016/S1359-6446(05)03415-X. 
16.    Morgan P., Brown D.G., Lennard S., Anderton M.J., Barrett J.C., Eriksson U., Fidock M., Hamren B., Johnson A., March R.E. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat. Rev. Drug Disco. 2018; 17: 167–181.
17.    Morgan P., Van Der Graaf P.H., Arrowsmith J., Feltner D.E., Drummond K.S., Wegner C.D., Street S.D.A. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Disco. Today. 2012; 17: 419–424. 
18.    Maple H.J., Garish R.A., Rigau-Roca L., Porter J., Whitcombe I., Prosser C.E., Kennedy J., Henry A.J., Taylor R.J., Crump M.P. Automated protein–ligand interaction screening by mass spectrometry. J. Med. Chem. 2012; 55: 837–851. 
19.    O’Reilly M., Cleasby A., Davies T.G., Hall R.J., Ludlow R.F., Murray C.W., Tisi D., Jhoti H. Crystallographic screening using ultra-low-molecular-weight ligands to guide drug design. Drug Disco. Today. 2019; 24: 1081–1086. 
20.    Shuker S.B., Hajduk P.J., Meadows R.P., Fenik S.W. Discovering high-affinity ligands for proteins: SAR by NMR. Science. 1996; 274: 1531–1534. 
21.    Madsen D., Azevedo C., Micco I., Petersen L.K., Hansen N.J.V. Chapter Four—An overview of DNA-encoded libraries: A versatile tool for drug discovery. In: Witty D.R., Cox B., editors. Progress in Medicinal Chemistry. 2020; 59: 181–249.
22.    Macaron R., Banks M.N., Botanic D., Burns D.J., Cerotic D.A., Gary antes T., Green D.V.S., Hertzberg R.P., Janzen W.P., Paslay J.W., et al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Disco. 2011; 10:188–195. 
23.    Hopkins AL. Network pharmacology. Nat Biotechnology. 2007; 25: 1110–1111. Doi: 10.1038/nbt1007-1110. 
24.    Wooller SK, Benstead-Hume G, Chen X, Ali Y, Pearl FMG. Bioinformatics in translational drug discovery. Bioscan Rep. 2017; 37: BSR20160180. Doi: 10.1042/BSR20160180.
25.    Katsina T, Spirulas GA, Patrinos GP, Matsoukas MT. Computational approaches in target identification and drug discovery. Compute Struct Biotechnology J. 2016; 14: 177–184. Doi: 10.1016/j.csbj.2016.04.004
26.    Dai YF, Zhao XM. A survey on the computational approaches to identify drug targets in the postgenomic era. Biomed Res Int. 2015 Doi: 10.1155/2015/239654.
27.    Abadio AK, Kagoshima ES, Teixeira MM, Martins NF, Maigret B, Felipe MS. Comparative genomics allowed the identification of drug targets against human fungal pathogens. BMC Genomics. 2011; 12: 75. Doi: 10.1186/1471-2164-12-75.27
28.    Shanmugam A, Natarajan J. Computational genome analyses of metabolic enzymes in Mycobacterium leprae for drug target identification. Bioinformation. 2010; 4: 392–395. doi: 10.6026/97320630004392.
29.    Lichtblau Y, Zimmermann K, Haldeman B, Lenze D, Hummel M, Leser U. Comparative assessment of differential network analysis methods. Brief Bio Informs. 2017; 18: 837–850. Doi: 10.1093/bib/bbw061.
30.    Huo M, Wang Z, Wu D, Zhang Y, Qiao Y. Using expression protein interaction network analysis to identify mechanisms of dashes affecting patients with coronary heart disease. Int J Mol Sci. 2017; 18: 1298. 
31.    Peng Q, Schork NJ. Utility of network integrity methods in therapeutic target identification. Front Genet. 2014; 5: 12. Doi: 10.3389/fgene.2014.00012
32.    Albert R, Jeong H, Bar abasi AL. Error and attack tolerance of complex networks. Nature. 2000; 406: 378–382. Doi: 10.1038/35019019.
33.    Xena Rios I, Rice DW, Zalinski L, Baron MK, Marcotte EM, Eisenberg D. DIP: the database of interacting proteins. Nucleic Acids Res. 2000; 28: 289–291. Doi: 10.1093/near/28.1.29.

Recomonded Articles:

Author(s): VI Zalavadiya, VK Shah, DD Santani, MS Patel, JM Fosi, AK Chaudhary.

DOI: Not Available         Access: Open Access Read More

Author(s): S. D. Kadam, S. A. Chavhan, S. A. Shinde, P. N. Sapkal

DOI: 10.5958/2321-5836.2018.00032.0         Access: Open Access Read More

Author(s): Ganesh G. Dhakad, Sayali V. Ganjiwale, Shweta M. Nawghare, Abhijit V. Shrirao, N.I. Kochar, A. V. Chandewar

DOI: 10.52711/2321-5836.2023.00014         Access: Open Access Read More

Author(s): Chithra Namasivayan, Selvakumar Selvaraj, Vidhya Kameshwari, Abraham Nimmy, Sangeetha Sundaramoorthy

DOI: 10.5958/2321-5836.2019.00028.4         Access: Open Access Read More

Author(s): Purnendu Panda, Banamali Das, G.C. Bhuyan, M.M. Rao

DOI: 10.52711/2321-5836.2021.00011         Access: Open Access Read More

Author(s): Swapnil S. Lad, Swati U. Kolhe, Omkar A. Devade, Chetashri N. Patil, Rohit D. Nalawade, Manthan R. Rode

DOI: 10.52711/2321-5836.2023.00026         Access: Open Access Read More

Author(s): Shaik Abdul Saleem, Bathula Lakshmi, J.N. Suresh Kumar

DOI: 10.52711/2321-5836.2021.00014         Access: Open Access Read More

Author(s): Gharge Deepali, Bavaskar Sunil, Todkar Pavan,Dhabale Pandurang.

DOI: Not Available         Access: Open Access Read More

Author(s): Mule VS, Potdar VH, Jadhav SD , Disouza J I.

DOI: Not Available         Access: Open Access Read More

Author(s): Shoaib Ahmad

DOI: 10.5958/2321-5836.2017.00017.9         Access: Open Access Read More

Author(s): Ashish Kumar Netam, Jhakeshwar Prasad, Trilochan Satapathy

DOI: 10.5958/2321-5836.2018.00004.6         Access: Open Access Read More

Author(s): Pradnya Dnyanesh Gharpankar, Prasad V. Kadam, Nutan S. Kamble

DOI: 10.52711/2321-5836.2024.00001         Access: Open Access Read More

Author(s): Raj Purnima, Temburnikar Pankaj, Agrawal Avantika, Shrivastava P.K., Rathod Mritunjay , Verma V. B.

DOI: Not Available         Access: Open Access Read More

Author(s): Rohan Pal, Ritam Ghosh, Banibrata Acharyya, Rajat Subhra Saha, Sudipta Dey, Arpita Nandy, Arin Bhattacharjee

DOI: 10.52711/2321-5836.2023.00032         Access: Open Access Read More

Author(s): Snehal Dilip Kothavale, Guruprasad Vinayak Borgaonkar, S.K. Mohite, S.R. Kane, Savita Satpute

DOI: 10.52711/2321-5836.2023.00020         Access: Open Access Read More

Author(s): Shashank Lavkush Shukla, Sudarshan E. Behere

DOI: 10.52711/2321-5836.2025.00010         Access: Open Access Read More

Research Journal of Pharmacology and Pharmacodynamics (RJPPD) is an international, peer-reviewed journal....... Read more >>>

RNI: Not Available                     
DOI: 10.5958 2321-5836 

Journal Policies & Information




Recent Articles




Tags