ABSTRACT:
Viruses are different diseases that cause serious problems for animals in different parts of the world. Helminthiasis is usually treated with anthelmintics. Unfortunately, the excessive use of anthelmintics has led to massive anthelmintic resistance. Anthelmintic resistance refers to the loss of genetic sensitivity to anthelmintics in a parasite that was previously susceptible to anthelmintics. The result of anthelmintic resistance occurs in different helminths of almost all animal species and in different anthelmintic groups in different countries. Chronic treatment, inadequate dosage, genetics of the parasite, purpose and timing of treatment are the main causes of anthelmintic resistance. Regulation of cellular efflux mechanisms, increased drug metabolism, changes in drug receptor sites (reduced drug binding or reduced functional effects of drug binding) and decreased abundance of drug receptors by reducing diseased bacteria are important factors in anthelmintic resistance. In vivo methods such as fecal egg count reduction index and in vitro methods such as egg hatchability test, larval strength test, larval development test and PCR can be used to test anthelmintic resistance. Correct use of antibiotics, combined use of antibiotics and use of alternative methods are important strategies to slow down the development of anthelmintic resistance. Since anthelmintic resistance is a major global problem, it is necessary to effectively reduce this problem by using existing antibiotics and reducing the dependence on anthelmintics.
Cite this article:
Ganesh G. Dhakad, Bhagyashri O. Fate, Sangita P. Shirsat, Rajesh D. Ahire. Review on Nanotechnology for Anthelmintic Resistance against Parasites Management. Research Journal of Pharmacology and Pharmacodynamics. 2025; 17(1):25-3. doi: 10.52711/2321-5836.2025.00005
Cite(Electronic):
Ganesh G. Dhakad, Bhagyashri O. Fate, Sangita P. Shirsat, Rajesh D. Ahire. Review on Nanotechnology for Anthelmintic Resistance against Parasites Management. Research Journal of Pharmacology and Pharmacodynamics. 2025; 17(1):25-3. doi: 10.52711/2321-5836.2025.00005 Available on: https://rjppd.org/AbstractView.aspx?PID=2025-17-1-5
REFERENCE:
1. L. Wang, X. Li, G. Zhang, J. Dong, J. Eastoe, Oil-in-water nanoemulsions for pesticide formulations, Journal of Colloid and Interface Science, 314 (2007) 230-235.
2. Y. Zhang, Z. Shang, C. Gao, M. Du, S. Xu, H. Song, T. Liu, Nanoemulsion for Solubilization, Stabilization, and In Vitro Release of Pterostilbene for Oral Delivery, AAPS PharmSciTech. 15 (2014) 1000-1008.
3. S.-P. Jiang, S.-N. He, Y.-L. Li, D.-L. Feng, X.-Y. Lu, Y.-Z. Du, H.-Y. Yu, F.-Q. Hu, H. Yuan, Preparation and characteristics of lipid nanoemulsion formulations loaded with doxorubicin, International Journal of Nanomedicine, 8 (2013) 3141-3150.
4. H. Devalapally, F. Zhou, J. McDade, G. Goloverda, A. Owen, I.J. Hidalgo, S. Silchenko, Optimization of PEGylated nanoemulsions for improved pharmacokinetics of BCS class II compounds, Drug Delivery, 22 (2015) 467-474.
5. H. Yu, Q. Huang, Improving the Oral Bioavailability of Curcumin Using Novel Organogel -Based Nanoemulsions, Journal of Agricultural and Food Chemistry, 60 (2012) 5373-5379.
6. W. Sun, X. Ma, X. Wei, Y. Xu, Nano composite emulsion for sustained drug release and improved bioavailability, Pharmaceutical Research, 31 (2014) 2774-2783.
7. R. Lu, S. Liu, Q. Wang, X. Li, Nanoemulsions as novel oral carriers of stiripentol: insights into the protective effect and absorption enhancement, International Journal of Nanomedicine, 10 (2015) 4937-4946.
8. Muheem, F. Shakeel, M.A. Jahangir, M. Anwar, N. Mallick, G.K. Jain, M.H. Warsi, F.J. Ahmad, A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives, Saudi Pharmaceutical Journal. 24 (2016) 413-428.
9. L.M. Ensign, R. Cone, J. Hanes, Oral Drug Delivery with Polymeric Nanoparticles: The Gastrointestinal Mucus Barriers, Advanced Drug Delivery Reviews, 64 (2012) 557-570.
10. A.A. Khan, J. Mudassir, N. Mohtar, Y. Darwis, Advanced drug delivery to the lymphatic system: lipid -based nanoformulations, International Journal of Nanomedicine, 8 (2013) 2733-2744.
11. N. Garti, M. Frenkel, R. Shwartz, Multiple Emulsions. Part II: Proposed Technique to Overcome Unpleasant Taste of Drugs, Journal of Dispersion Science and Technology, 4 (1983) 237-252.
12. P.J. Sinko, L.V. Allen Jr, N.G. Popovich, H.C. Ansel, 1: 1. Martin’s Physical Pharmacy and Pharmaceutical Sciences, (2006).
13. S. Anuchapreeda, Y. Fukumori, S. Okonogi, H. Ichikawa, Preparation of Lipid Nanoemulsions Incorporating Curcumin for Cancer Therapy, Journal of Nanotechnology, 2012 (2012) 11.
14. Y.Y. Hwang, K. Ramalingam, D.R. Bienek, V. Lee, T. You, R. Alvarez, Antimicrobial Activity of Nanoemulsion in Combination with Cetylpyridinium Chloride in Multidrug-Resistant Acinetobacter baumannii, Antimicrobial Agents and Chemotherapy, 57 (2013) 3568-3575.
15. Sarai RS, Kopp SR, Coleman GT, Kotze AC. Drug-efflux and target-site gene expression patterns in Haemonchus contortus larvae able to survive increasing concentrations of levamisole in vitro. Int J Parasitol Drugs Drug Resist. 2014; 4:77–84. doi: 10.1016/j.ijpddr.2014.02.001
16. Kotze. A, Hunt W, Skuce P, von Samson-himmelstjerna G, Martin RJ. Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. Int J Parasitol Drugs Drug Resist. 2014;4(3)::164–18. doi: 10.1016/j.ijpddr.2014.07.007
17. Jessica SK. Anthelmintic Resistance in Equine Parasites: Anthelmintic Resistance in Equine Parasites: Mechanisms and Treatment Approaches. Veterinary Science, degree of Doctor of Philosophy in the College of Agriculture, Food and Environment, University of Kentucky University of Kentucky Uknowledge; 2019:288.
18. Yilmaz E, Ramünke S, Demeler J, Krücken J. Comparison of constitutive and thiabendazole-induced expression of five cytochrome P450 genes in fourth-stage larvae of Haemonchus contortus isolates with different drug susceptibility identifies one gene with high constitutive expression in a multi-resis. Int J Parasitol Drug. 2017; 7: 362–369. doi: 10.1016/j.ijpddr.2017.10.001 [
19. Shayan P, Eslami A, Borji H. Innovative restriction site created PCR-RFLP for detection of benzimidazoles resistance in Teladorsagia circumcincta. Parasitol Res. 2007; 100(5): 1063–1068. doi: 10.1007/s00436-006-0357-y
20. Haudhry U, Redman E, Raman M, Gilleard J. Genetic evidence for the spread of benzimidazoles resistance mutation across southern India from a single origin in the parasitic nematode Haemonchus contortus. Int J Parasitol. 2015; 45: 721–8. doi: 10.1016/j.ijpara.2015.04.007
21. Martin A, Robertson S, Buxton R, Beech C, Charvet C. Levamisole receptors: a second awakening. Trends Parasitol. 2012; 28: 289–296.
22. Sarai S, Steven R, Kopp M, et al. In vitro levamisole selection pressure on larval stages of Haemonchus contortus over nine generations gives rise to drug resistance and target site gene expression changes specific to the early larval stages only. Vet Parasitol. 2015; 211: 45–53.
23. Wolstenholme J, Fairweather I, Prichard R, von Samson-himmelstjerna G, Sangster NC. Drug resistance in veterinary helminths. Trends Parasitol. 2004; 20(10): 469–476. doi: 10.1016/j.pt.2004.07.010
24. Ihler CF. Anthelmintic resistance. An overview of the situation in the Nordic countries. Acta Vet Scand. 2010;52(Suppl 1): S24. doi: 10.1186/1751-0147-52-S1-S24
25. Álvarez-sánchez M, Perez-Garcia J, Cruz-Rojo MA, Rojo-Vázquez FA. Real time PCR for the diagnosis of benzimidazole resistance in trichostrongylids of sheep. Vet Parasitol. 2005; 129(3–4):291–298. doi: 10.1016/j.vetpar.2005.02.004
26. Zajac A, Conboy G. Veterinary Clinical Parasitology. 7th ed. UK: Black well; 2006:19–20.
27. Kohler P. Invited review the biochemical bases of anthelmintic action and resistance. Int J Parasitol. 2001; 31:336–345. doi: 10.1016/S0020-7519(01)00131-X
28. Elard L, Cabaret J, Humbert JF. PCR diagnosis of benzimidazole-susceptibility or -resistance in natural populations of the small ruminant parasite, Teladorsagia circumcincta. Vet Parasitol. 1999;80(3):231–237. doi: 10.1016/S0304-4017(98)00214-3
29. Sargison N. Pharmaceutical control of end parasitic helminth infestations in sheep. Vet Clin North Am Food Anim Pract. 2011; 27(1): 139–156. doi: 10.1016/j.cvfa.2010.10.014
30. V. Ghosh, A. Mukherjee, N. Chandrasekaran, Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage, Colloids and surfaces. B, Biointerfaces, 114 (2014) 392-397. Accepted Manuscript Accepted Manuscript
31. K.A. Abd-Elsalam, A.R. Khokhlov, Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds, Applied Nanoscience, 5 (2015) 255-265.
32. T.K. Vyas, A. Shahiwala, M.M. Amiji, Improved Oral Bioavailability and Brain Transport of Saquinavir Upon Administration in Novel Nanoemulsion Formulations, International journal of pharmaceutics, 347 (2008) 93-101.
33. D.S. Bernardi, T.A. Pereira, N.R. Maciel, J. Bortoloto, G.S. Viera, G.C. Oliveira, P.A. Rocha-Filho, Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments, Journal of Nanobiotechnology, 9 (2011) 44.
34. 170. Echeverría J., de Albuquerque D.G., Diego R. Nanoemulsions of essential oils: New tool for control of vector–borne diseases and in vitro effects on some parasitic agents. Medicines. 2019; 6:42. doi: 10.3390/medicines6020042.
35. 171. Montoya J.G., Liesenfeld O. Toxoplasmosis. Lancet. 2004; 363:1965–1976. doi: 10.1016/S0140-6736(04)16412-X.
36. 172. Pinto B., Mattei R., Moscato G.A., Cristofano M., Giraldi M., Scarpato R., Buffolano W., Bruschi F. Toxoplasma infection in individuals in central Italy: Does a gender-linked risk exist? Eur. J. Clin. Microbiol. Infect. Dis. 2017; 36: 739–746. doi: 10.1007/s10096-016-2857-8.
37. 173. Dunay I.R., Gajurel K., Dhakal R., Liesenfeld O., Montoya J.G. Treatment of toxoplasmosis: Historical perspective, animal models, and current clinical practice. Clin. Microbiol. Rev. 2018;31:e00057-17. doi: 10.1128/CMR.00057-17.
38. 174. Azami S.J., Amani A., Keshavarz H., Najafi-Taher R., Mohebali M., Faramarzi M.A., Mahmoudi M., Shojaee S. Nanoemulsion of atovaquone as a promising approach for treatment of acute and chronic toxoplasmosis. Eur. J. Pharm. Sci. 2018; 117:138–146. doi: 10.1016/j.ejps.2018.02.018.
39. 175. Bruschi F., Gradoni L. The Leishmaniases: Old Neglected Tropical Diseases. Springer; Berlin, Germany: 2018.
40. 176. da Silva Cardoso V., Vermelho A.B., Ricci Junior E., Almeida Rodrigues I., Mazotto A.M., Supuran C.T. Antileishmanial activity of sulphonamide nanoemulsions targeting the β-carbonic anhydrase from Leishmania species. J. Enzym. Inhib. Med. Chem. 2018; 33:850–857. doi: 10.1080/14756366.2018.1463221.
41. 177. Dhorm Pimentel de Moraes A.R., Tavares G.D., Soares Rocha F.J., de Paula E., Giorgio S. Effects of nanoemulsions prepared with essential oils of copaiba and andiroba against Leishmania infantum and Leishmania amazonensis infections. Exp. Parasitol. 2018; 187: 12–21. doi: 10.1016/j.exppara.2018.03.005.
42. 178. de Oliveira de Siqueira L.B., da Silva Cardoso V., Rodrigues I.A., Vazquez-Villa A.L., dos Santos E.P., da Costa Leal Ribeiro Guimarães B., Dos Santos Cerqueira Coutinho C., Vermelho A.B., Junior E.R. Development and evaluation of zinc phthalocyanine nanoemulsions for use in photodynamic therapy for Leishmania spp. Nanotechnology. 2017; 28: 65101.
43. 179. Shokri A., Saeedi M., Fakhar M., Morteza-Semnani K., Keighobadi M., Teshnizi S.H., Kelidari H.R., Sadjadi S. Antileishmanial activity of Lavandula angustifolia and Rosmarinus officinalis essential oils and nano-emulsions on Leishmania major (MRHO/IR/75/ER) Iran. J. Parasitol. 2017; 12: 622.
44. 180. Bouyahya A., Et-Touys A., Bakri Y., Talbaui A., Fellah H., Abrini J., Dakka N. Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microb. Pathog. 2017; 111: 41–49. doi: 10.1016/j.micpath.2017.08.015.