Author(s): Rohit Kumar, Anshul Chawla, Gaganpreet, Diksha

Email(s): rohit.kumar88701@gmail.com , diksha306557@gmail.com

DOI: 10.5958/2321-5836.2020.00021.X   

Address: Rohit Kumar*, Anshul Chawla, Gaganpreet, Diksha
CT College of Pharmacy, Shahpur, Jalandhar, India, Pincode-144020.
*Corresponding Author

Published In:   Volume - 12,      Issue - 3,     Year - 2020


ABSTRACT:
COVID-19 is fatal infectious diseasecaused by SARS-COV2 that majorly induce the problems in respiratory system. The first case of COVID-19 was reported in the wet animal market of Wuhan city, China. Patient to patient transmission represents the major global public health concern of COVID-19disease. Large scale measures such as isolation of infected patients, social distancing, and frequent washing of hands and usage of face masks have been implemented to control the epidemics ofCOVID-19. Children, health care providers and elderly people are more susceptible to get infected from the corona virus disease. In this review, we highlight the epidemiology, symptoms, interspecies transmission, virus pathogenesis, preventive measures and future options to reduce the outbreak of this disease.


Keywords:

Cite this article:
Rohit Kumar, Anshul Chawla, Gaganpreet, Diksha. A Valuable insight to the novel deadly COVID-19: A Review. Res. J. Pharmacology and Pharmacodynamics.2020; 12(3):111-116. doi: 10.5958/2321-5836.2020.00021.X

Cite(Electronic):
Rohit Kumar, Anshul Chawla, Gaganpreet, Diksha. A Valuable insight to the novel deadly COVID-19: A Review. Res. J. Pharmacology and Pharmacodynamics.2020; 12(3):111-116. doi: 10.5958/2321-5836.2020.00021.X   Available on: https://rjppd.org/AbstractView.aspx?PID=2020-12-3-2


REFERENCES:
1.    Sahin AH, Erdogan A, Agaoglu PM et al. Novel Coronavirus (COVID-19) Outbreak: A Review of the Current Literature. Eurasian Journal of Medicine and oncology. 2020; 4(1):1–7.
2.    Zaki AM, Van BS, Bestebroer TM et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine. 2012;367(19):1814–1820.
3.    WHO. Novel Coronavirus-Japan (ex-China). 2020. https:// www.who.int/csr/don/17-january-2020-novel-coronavirus-japan-ex-china/en/
4.    Chen L, Liu B, Yang J et al. The database of bat-associated viruses. Database (Oxford). 2014; bau021.
5.     Rolling updates on the coronavirus disease. WHO. 13 may 2020.
6.    Zu Z Y, Jiang M D, Xu P P et al. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology. 2020
7.    Weiss S, Leibowitz J. Coronavirus pathogenesis-Literature review. Advances in Virus research. 2011; 81:85-164.
8.    Chan J F, To KK, Tse H, Jin DY et al. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbioliogy. 2013; 21(10):544-55.
9.    CDC. 2019 Novel coronavirus, Wuhan, China. 2020.
10.    Huang C, Wang Y, Li X, Ren L et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395:497–506.
11.    Shannon L E, Dean D E, Michael D B et al. Real-Time Reverse Transcription–Polymerase Chain Reaction Assay for SARS-associated Coronavirus. Emerging Infectious Disease. 2004; 10(2): 311–316.
12.    Ksiazek TG, Erdman D, Goldsmith CS et al. A novel coronavirus associated with severe acute respiratory syndrome. New England Journal of Medicines. 2003; 348: 1953-1966
13.    Zhu N, Zhang D, Wang W et al. A novel coronavirus from patients with pneumonia in China. New England Journal of Medicine. 2020; 382: 727-733.
14.    Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Bioscience Trends. 2020; 14(1): 69-71.
15.    Wang J, Tang F, Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan China. Journal of Medicinal Virology. 2020; 92 (4): 441–447.
16.     https.//www.aacc.org/education-and career/learning-lab.
17.    Barcena M, Oostergetel GT, Bartelink W. Cryo-electron tomography of mouse hepatitis virus: Insights into the structure of the coronavirion. Proceedings of the National Academy of Sciences of the United States of America. 2020; 106(2): 582–587.
18.    Cornelis A M, de Haan, Kuo L, Paul S M. Coronavirus particle assembly: primary structure requirements of the membrane protein. Journal of Virology. 1998; 72(8):6838–6850.
19.    Beniac DR, Andonov A, Grudeski E, Booth TF. Architecture of the SARS coronavirus prefusion spike. Nature structural & molecular biology. 2006; 13(8):751–752.
20.    Delmas B, Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. Journal of virology. 1990; 64(11): 5367–5375.
21.    Lu G, Wang Q, Gao GF. Bat-to-human: spike features determining “host jump” of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends in Microbiology. 2015; 23(8):468-78.
22.    Bosch BJ, van der Z R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. Journal of Virology. 2003; 77:8801–8811.
23.    Narayanan K, Maeda A, Maeda J, Makino S. Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells. Journal of Virology. 2000; 74:8127–8134.
24.    Ye Y and Brenda G. Hogue. Role of the Coronavirus E Viroporin Protein Transmembrane Domain in Virus Assembly. Journal of Virology. 2007; 3597–3607
25.    Tugba T T and Gizem T, Structure and function of Coronavirus: Molecular modeling of Viral Nuceloprotein. International Journal of Virology and Infectious Diseases. 2017; 2(1):1-8.
26.    Anthony R F and Stanley P. Coronaviruses: An Overview of Their Replication and Pathogenesis. Methods in Molecular Biology. 2015; 1282: 1-23.
27.     Kubo H, Yamada YK, Taguchi F. Localization of neutralizing epitopes and the receptor-binding site within the amino. terminal 330 amino acids of the murine coronavirus spike protein. Journal of Virology. 1994; 68:5403–5410.
28.     Cheng PK, Wong DA, Tong LK et al. Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet. 2004; 363:1699–1700.
29.    Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proceeding of National Academy of Science of USA. 2009; 106:5871–5876.
30.    Baranov PV, Henderson CM, Anderson CB et al. Programmed ribosomal frameshifting in decoding the SARS-CoVgenome.Virology. 2009; 332:498–510.
31.    Brierley I, Digard P, Inglis SC. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1989; 57:537–547.
32.    Krijnse-Locker J, Ericsson M, Rottier PJM et al. Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. Journal of Cell Biology. 1994; 124:55–70.
33.    Tooze J, Tooze S, Warren G. Replication of coronavirus MHV-A59 in saccells: determination of the first site of budding of progeny virions. European Journal of Cell Biology. 1984; 33:281–293.
34.    Kuo L, Masters PS. Functional analysis of the murine coronavirus genomic RNA packaging signal. Journal of Virology. 2013; 87:5182–5192.
35.    Sevim Z, Jun H C, Vissagan S, Amer H. COVID-19 and Multi-Organ Response. Current Problability of Cardiology. 2020; 100618.
36.    Li Q, Guan X, Wu P et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New England Journal of Medicine. 2020; 382:1199-1207.
37.    Chaolin H, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 10223, 497-506.
38.    Magiorkinis, G, Magiorkinis E, Paraskevis D et al. Phylogenetic analysis of the full-length SARS-CoV sequences: evidence for phylogenetic discordance in three genomic regions. Journal of Medicinal Virology. 2004; 74: 369–372.
39.    Assiri A, Al-Tawfiq JA, Al-Rabeeah, Al-Rabiah, et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study, Lancet Infectious Diseases. 2013; 13: 752–761.
40.     Lapps W, Hogue BG, Brian DA. Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology. 1987; 157: 47–57.
41.    Lee H J, Shieh A E, Gorbalenya et al. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology.1991; 180:567–582.
42.     Lee N, Hui D, Wu A, Chan P et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. New England Journal of Medicines. 2003; 348: 1986–1994.
43.    Bassetti M, Vena A, Roberto G. The Novel Chinese Coronavirus (2019- nCoV) Infections: challenges for fighting the storm. European Journal of Clinical Investigations. 2020; 50(3): 1-4.
44.    Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New England Journal of Medicines. 2020; 382:1199-1207.
45.    Ong SW, Tan YK, Chia PY et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. The Journal of the American Medical Association. 2020; 323(16): 1610-1612.
46.    World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) 16-24 February 2020 [Internet]. Geneva: World Health Organization; 2020.
47.    Roca-Ho H, Riera M, Palau V, Pascual J, Soler MJ. Characterization of ACE and ACE2 Expression within Different Organs of the NOD Mouse. International Journal of Molecular Sciences. 2017; 18:563.
48.    Romani-Perez M, Outeirino-Iglesias V, Moya CM, Santisteban P et al. Activation of the GLP-1 receptorby liraglutide increases ACE2 expression, reversing right ventricle hypertrophy, and improving the production of SP-A and SP-B in the lungs ofType 1 diabetes rats. Endocrinology. 2015;156: 3559–3569.
49.    Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A. Coronavirus disease 2019 (COVID-19): a systematic review of imaging findings in 919 patients. American Journal of Roentgenology. (In press)
50.    Tikoo K, Patel G, Kumar S, Karpe PA, Sanghavi M et al. Tissue specific up regulation of ACE2 in rabbit model ofatherosclerosis by atorvastatin: role of epigenetic histone modifications. Biochemistry and Pharmacology. 2015; 93: 343–351.
51.    Yang X, Yu Y, Xu J, Shu H et al. Clinical course andoutcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. LancetRespiratory Medicines. 2020; 8(5): 475-481.
52.    Xu Z, Shi L, Wang Y, Zhang J, Huang L et al. Pathological findings of COVID-19 associated with acute respiratorydistress syndrome. LancetRespiratory Medicines. 2020; 8: 420–422.
53.    Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet. 2020; 395 (10223): 497–506.
54.    Global Surveillance for human infection with coronavirus disease COVID-2019 (2020) Interim guidance, Geneva, World Health Organization.
55.    Lu H, Drug treatment options for the 2019-new coronavirus 2019-nCoV Bioscience. Trends 2020; 16;14(1):69-71.
56.    WHO. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection in suspected (2020) Interim guidance.
57.    Li H, Wang YM, Xu JY, Cao B. Potential antiviral therapeutics for 2019 Novel Cronavirus. Chinese Journal of Tuberculosis and Respiratory Diseases. 2020; 43:E002.
58.    Agostini ML, Andres EL, Sims AC et al. Coronavirus susceptibility to the antiviral remdesivir (gs-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. Biology. 2018; 20189(2):e00221–18.
59.    Aguiar ACC, Murce E, Cortopassi WA, Pimentel AS et al. Chloroquine analogs as antimalarial candidates with potent in vitro and in vivo activity. International Journal of Parasitology Drugs and Drug Resist 2018; 8(3):459–64.
60.    Vincent MJ, Bergeron E, Benjannet S et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology. 2005; 2: 69.
61.    Wang M, Cao R, Zhang L, Yang X et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research. 2020; 30: 269–27.
62.    Jin YH, Cai L, Cheng ZS, Cheng H et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Medical Research. 2020; 7: 4.
63.    WHO. Coronavirus disease (covid-19) outbreak: rights, roles and responsibilities of health workers, including key considerations for occupational safety and health (2020).

Recomonded Articles:

Author(s): Dudhal SC, Hapse SA, Kothule MB.

DOI: Not Available         Access: Open Access Read More

Author(s): Rohit Kumar, Anshul Chawla, Gaganpreet, Diksha

DOI: 10.5958/2321-5836.2020.00021.X         Access: Open Access Read More

Author(s): Avantika Dhadwal, Ankita Rana, Sakshi Sharma, Gaurav Bhardwaj

DOI: 10.52711/2321-5836.2023.00039         Access: Open Access Read More


Recent Articles




Tags