Author(s): Namrata Prajapati, Jaideep Singh

Email(s): namrata1819@gmail.com

DOI: 10.52711/2321-5836.2024.00005   

Address: Namrata Prajapati1, Jaideep Singh2
1National Institute of Pharmaceutical Education and Research, Gujarat, India
2Monash University, Vicotria, Australia
*Corresponding Author

Published In:   Volume - 16,      Issue - 1,     Year - 2024


ABSTRACT:
Calpain was first found in the year 1964 as a calcium associated cysteine protease enzyme. Mostly, it is present in all the eukaryotes and other organism. Despite of being an enzyme calpain is involved in cellular organization rather than proteolytic digestion. For calpain activation, adequate concentration of calcium is required. Rest of the concentration they get from endoplasmic reticulum (ER), calcium influx during oxidative stress etc. In adverse condition calpain utilized all the excess calcium and activates molecular cascade involved in progression of various disease. Pathogenesis of every disease is highly protein specific such as in Alzheimer’s disease CDK5 and MAPK, phosphorylate Tau proteins in the brain. Further, Beclin 1, Bcl 2 and PGC-1a interfere with the mitochondrial function in heart resulting in abnormal functioning. Few studies have been suggesteddeactivation of calpain may ameliorate pathological conditions but still there are certain checkpoints which are still unexplored and need attention. Calpain has role in several pathological conditions but in this comprehensive review, we expect to cover how calpain is involved in the pathogenesis of neurodegenerative disorders, cardiovascular and cancer. This review also explained findings of different researchers on use of calpain inhibitors and impact of knocking down calpain gene in amelioration of pathogenesis. This advanced knowledge of mechanismand findings would be helpful for further development of calpain inhibitors for clinical use.


Cite this article:
Namrata Prajapati, Jaideep Singh. Calpain: An Emerging Therapeutic Target. Research Journal of Pharmacology and Pharmacodynamics. 2024;16(1):25-9. doi: 10.52711/2321-5836.2024.00005

Cite(Electronic):
Namrata Prajapati, Jaideep Singh. Calpain: An Emerging Therapeutic Target. Research Journal of Pharmacology and Pharmacodynamics. 2024;16(1):25-9. doi: 10.52711/2321-5836.2024.00005   Available on: https://rjppd.org/AbstractView.aspx?PID=2024-16-1-5


REFERENCES:
1.    Moldoveanu T, Hosfield CM, Lim D, Elce JS, Jia Z, Davies PL. A Ca2+ switch aligns the active site of calpain. Cell. 2002; 108(5): 649-60.
2.    Letavernier E, Perez J, Bellocq A, Mesnard L, de Castro Keller A, Haymann JP, Baud L. Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin ii–induced hypertension. Circulation Research. 2008; 102(6): 720-8.
3.    Baudry M, Bi X. Calpain-1 and calpain-2: the yin and yang of synaptic plasticity and neurodegeneration. Trends in Neurosciences. 2016; 39(4): 235-45.
4.    Ohno S, Emori Y, Imajoh S, Kawasaki H, Kisaragi M, Suzuki K. Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein?. Nature. 1984; 312(5994): 566-70.
5.    Breitwieser GE. Extracellular calcium as an integrator of tissue function. The international journal of biochemistry & cell biology. 2008; 40(8): 1467-80.
6.    Ono Y, Sorimachi H. Calpains—An elaborate proteolytic system. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2012; 1824(1): 224-36.
7.    Shapovalov I, Harper D, Greer PA. Calpain as a therapeutic target in cancer. Expert Opinion on Therapeutic Targets. 2022; 26(3): 217-31.
8.    Camins A, Verdaguer E, Folch J, Pallàs M. Involvement of calpain activation in neurodegenerative processes. CNS Drug Reviews. 2006; 12(2): 135-48.
9.    Buchake VV, Muthal AP, Saudagar RB, Bachhav RS. A neurodegenerative disorder-Alzheimer disease: A treatise. Research Journal of Pharmacology and Pharmacodynamics. 2010; 2(4): 268-73.
10.    Kurbatskaya K, Phillips EC, Croft CL, Dentoni G, Hughes MM, Wade MA, Al-Sarraj S, Troakes C, O’Neill MJ, Perez-Nievas BG, Hanger DP. Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer’s disease brain. Acta Neuropathologica Communications. 2016; 4(1): 1-5.
11.    Potz BA, Abid MR, Sellke FW. Role of calpain in pathogenesis of human disease processes. Journal of Nature and Science. 2016; 2(9).
12.    Shams R, Banik NL, Haque A. Calpain in the cleavage of alpha-synuclein and the pathogenesis of Parkinson's disease. Progress in Molecular Biology and Translational Science. 2019; 167:107-24.
13.    Vakhariya RR, Talokar SS, Salunkhe VR, Magdum CS. Cognitive Disorders and its Herbal Remedies. Research Journal of Pharmacognosy and Phytochemistry. 2017; 9(1):42-6.
14.    Aanandhi MV, Niventhi A, Rujaswini T, Hemalatha CN, Praveen D. A Comprehensive Review on the Role of Tau Proteins in Alzheimer's Pathology. Research Journal of Pharmacy and Technology. 2018; 11(2):788-90.
15.    Nixon RA. The calpains in aging and aging-related diseases. Ageing Research Reviews. 2003; 2(4):407-18.
16.    Saatman KE, Murai H, Bartus RT, Smith DH, Hayward NJ, Perri BR, McIntosh TK. Calpain inhibitor AK295 attenuates motor and cognitive deficits following experimental brain injury in the rat. Proceedings of the National Academy of Sciences. 1996; 93(8): 3428-33.
17.    Saito K, Elce JS, Hamos JE, Nixon RA. Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proceedings of the National Academy of Sciences. 1993; 90(7): 2628-32.
18.    Alvarez A, Toro R, Cáceres A, Maccioni RB. Inhibition of tau phosphorylating protein kinase CDK5 prevents β-amyloid-induced neuronal death. FEBS letters. 1999 Oct 15; 459(3):421-6.
19.    Dhinakaran S, Tamilanban T, Chitra V. Targets for Alzheimer's Disease. Research Journal of Pharmacy and Technology. 2019; 12(6): 3073-7.
20.    Medeiros R, Kitazawa M, Chabrier MA, Cheng D, Baglietto-Vargas D, Kling A, Moeller A, Green KN, LaFerla FM. Calpain Inhibitor A-705253 Mitigates Alzheimer's Disease–Like Pathology and Cognitive Decline in Aged 3xTgAD Mice. The American Journal of Pathology. 2012; 181(2): 616-25.
21.    Metwally E, Al-Abbadi HA, Hussain T, Murtaza G, Abdellatif AM, Ahmed MF. Calpain signaling: from biology to therapeutic opportunities in neurodegenerative disorders. Frontiers in Veterinary Science. 2023; 10.
22.    Trinchese F, Liu S, Zhang H, Hidalgo A, Schmidt SD, Yamaguchi H, Yoshii N, Mathews PM, Nixon RA, Arancio O. Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease. The Journal of Clinical Investigation. 2008; 118(8): 2796-807.
23.    Babu V, Khurana N. A review on mitochondrial dysfunction and oxidative stress due to complex-i in Parkinson disease. Research Journal of Pharmacology and Pharmacodynamics. 2021; 13(4): 167-70.
24.    Gao A, McCoy HM, Zaman V, Shields DC, Banik NL, Haque A. Calpain activation and progression of inflammatory cycles in Parkinson’s disease. Frontiers in Bioscience (Landmark edition). 2022; 27(1): 20.
25.    Prasad J, Netam AK, Singh R, Sahu M, Satapathy T, Rao SP, Baghel P, Sahu MK. Therapeutic Approaches for the Management of Parkinson's disease. Research Journal of Pharmacology and Pharmacodynamics. 2019; 11(1): 46-52.
26.    Shams R, Banik NL, Haque A. Calpain in the cleavage of alpha-synuclein and the pathogenesis of Parkinson's disease. Progress in Molecular Biology and Translational Science. 2019; 167:107-24.
27.    Zaman V, Drasites KP, Myatich A, Shams R, Shields DC, Matzelle D, Haque A, Banik NL. Inhibition of Calpain Attenuates Degeneration of Substantia Nigra Neurons in the Rotenone Rat Model of Parkinson’s Disease. International Journal of Molecular Sciences. 2022; 23(22): 13849.
28.    Hanna RA, Garcia-Diaz BE, Davies PL. Calpastatin simultaneously binds four calpains with different kinetic constants. FEBS letters. 2007; 581(16): 2894-8.
29.    Carlson R, Sjaastad OM, Louch CE, Theis Tonnessen I, Lunde M, Kvaloy H, Aronsen W, Lunde IG, Dalhus B, Hafver L, Hodne K. Molecular Basis of Calpain Cleavage and.
30.    Sandmann S, Yu M, Unger T. Transcriptional and translational regulation of calpain in the rat heart after myocardial infarction–effects of AT1 and AT2 receptor antagonists and ACE inhibitor. British Journal of Pharmacology. 2001; 132(3): 767-77.
31.    Zhang M, Wang G, Peng T. Calpain-mediated mitochondrial damage: An emerging mechanism contributing to cardiac disease. Cells. 2021; 10(8):2024.
32.    Russo R, Berliocchi L, Adornetto A, Varano GP, Cavaliere F, Nucci C, Rotiroti D, Morrone LA, Bagetta G, Corasaniti MT. Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo. Cell Death & Disease. 2011:2(4):e144-.
33.    Merlin NJ, Parthasarathy V, Manavalan R, Devi P, Meera R. Apoptosis Significance and Molecular Mechanisms-A Review. Asian Journal of Research in Chemistry. 2009; 2(4):369-75.
34.    Gahl RF, Dwivedi P, Tjandra N. Bcl-2 proteins bid and bax form a network to permeabilize the mitochondria at the onset of apoptosis. Cell Death & Disease. 2016: 7(10):e2424-.
35.    Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator–activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. The Journal of Clinical Investigation. 2000; 106(7):847-56.
36.    Chen Q, Thompson J, Hu Y, Dean J, Lesnefsky EJ. Inhibition of the ubiquitous calpains protects complex I activity and enables improved mitophagy in the heart following ischemia-reperfusion. American Journal of Physiology-Cell Physiology. 2019; 317(5): C910-21.
37.    Li L, Thompson J, Hu Y, Lesnefsky EJ, Willard B, Chen Q. Calpain-mediated protein targets in cardiac mitochondria following ischemia–reperfusion. Scientific Reports. 2022; 12(1): 138.
38.    Wang Y, Chen B, Huang CK, Guo A, Wu J, Zhang X, Chen R, Chen C, Kutschke W, Weiss RM, Boudreau RL. Targeting calpain for heart failure therapy: implications from multiple murine models. JACC: Basic to Translational Science. 2018; 3(4): 503-17.
39.    Letavernier E, Perez J, Bellocq A, Mesnard L, de Castro Keller A, Haymann JP, Baud L. Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin ii–induced hypertension. Circulation Research. 2008; 102(6):720-8.
40.    Yadav AR, Mohite SK. Cancer-A silent killer: An overview. Asian Journal of Pharmaceutical Research. 2020; 10(3):213-6.
41.    Michel JJ, Scott JD. AKAP mediated signal transduction. Annual review of pharmacology and toxicology. 2002 Apr; 42(1):235-57.
42.    Shapovalov I, Harper D, Greer PA. Calpain as a therapeutic target in cancer. Expert Opinion on Therapeutic Targets. 2022; 26(3):217-31.
43.    Fatma F, Kumar A. The Cell Cycle, Cyclins, Checkpoints and Cancer.
44.    Han Y, Weinman S, Boldogh I, Walker RK, Brasier AR. Tumor necrosis factor-α-inducible IκBα proteolysis mediated by cytosolic m-calpain: a mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-κb activation. Journal of Biological Chemistry. 1999; 274(2): 787-94.
45.    Gonen H, Shkedy D, Barnoy S, Kosower NS, Ciechanover A. On the involvement of calpains in the degradation of the tumor suppressor protein p53. FEBS letters. 1997 Apr 7; 406(1-2):17-22.
46.    Gafni J, Cong X, Chen SF, Gibson BW, Ellerby LM. Calpain-1 cleaves and activates caspase-7. Journal of Biological Chemistry. 2009; 284(37): 25441-9.
47.    Rachmi E, Purnomo BB, Endharti AT, Fitri LE. In silico prediction of Anti-apoptotic BCL-2 proteins Modulation by Afzelin in MDA-MB-231 Breast cancer cell. Research Journal of Pharmacy and Technology. 2020; 13(2):905-10.
48.    Gao G, Dou QP. N‐terminal cleavage of bax by calpain generates a potent proapoptotic 18‐kDa fragment that promotes bcl‐2‐independent cytochrome C release and apoptotic cell death. Journal of Cellular Biochemistry. 2001; 80(1):53-72.
49.    Enomoto A, Fukasawa T. The role of calcium-calpain pathway in hyperthermia. Frontiers in Molecular Medicine. 2022; 2:1005258.
50.    Grieve S, Gao Y, Hall C, Hu J, Greer PA. Calpain genetic disruption and HSP90 inhibition combine to attenuate mammary tumorigenesis. Molecular and Cellular Biology. 2016; 36(15): 2078-88.
51.    Conacci-Sorrell M, Ngouenet C, Anderson S, Brabletz T, Eisenman RN. Stress-induced cleavage of Myc promotes cancer cell survival. Genes & Development. 2014 Apr 1; 28(7):689-707.
52.    Ho WC, Pikor L, Gao Y, Elliott BE, Greer PA. Calpain 2 regulates Akt-FoxO-p27Kip1 protein signaling pathway in mammary carcinoma. Journal of Biological Chemistry. 2012; 287(19): 15458-65.
53.    Te Boekhorst V, Jiang L, Mählen M, Meerlo M, Dunkel G, Durst FC, Yang Y, Levine H, Burgering BM, Friedl P. Calpain-2 regulates hypoxia/HIF-induced plasticity toward amoeboid cancer cell migration and metastasis. Current Biology. 2022; 32(2):412-27.
54.    Sarı Kılıçaslan SE, Seller ZE. Tunicamycin induced inhibition of calpain 1 and 2 enzyme activity in ovarian cancer cells.  International Journal of Basic & Clinical Pharmacology. 2023; 12: 334
55.    Sheu ML, Liu SH, Lan KH. Honokiol induces calpain-mediated glucose-regulated protein-94 cleavage and apoptosis in human gastric cancer cells and reduces tumor growth. PLoS One. 2007; 2(10):e1096.

Recomonded Articles:

Author(s): Purnendu Panda, Banamali Das, DS Sahu, SK Meher, Das, GC Nanda.

DOI: Not Available         Access: Open Access Read More

Author(s): K. Rashid, C. Senthil Kumar, P. M. Mohammed Haleel

DOI: 10.5958/2321-5836.2017.00037.4         Access: Open Access Read More

Author(s): Madhavi Sahu, S. Prakash Rao

DOI: 10.5958/2321-5836.2018.00031.9         Access: Open Access Read More

Author(s): D Rajesh Kumar,M Siva Shankar,P Prathap Reddy, B Ram Sarath Kumar, N Sumalatha A

DOI: Not Available         Access: Open Access Read More

Author(s): Lubna Azmi, Shyam Sundar Gupta, Ila Shukla, Padam Kant, O. P. Sidhu, Ch. V. Rao

DOI: 10.5958/2321-5836.2017.00001.5         Access: Open Access Read More

Author(s): Dipsundar Sahu, Shakti Bhushan, Debajyoti Das, Saroj Kumar Debnath, Laxmidhar Barik, Vandana Meena, Vikas Singh, Amit Kumar Dixit, PVV Prasad

DOI: 10.52711/2321-5836.2021.00015         Access: Open Access Read More

Author(s): Kanase KG, Shinde NV, Bharti DK, Undale VR, Bhosale AV.

DOI: Not Available         Access: Open Access Read More

Author(s): Sathyaseelan Thennarasan, Subbiah Murugesan, Vajiravelu Sivamurugan

DOI: 10.5958/2321-5836.2017.00011.8         Access: Open Access Read More

Author(s): Madhavi T, Soosammajohn, Khambhoja S, Bincy Raj, Amit Kumar.

DOI: Not Available         Access: Open Access Read More

Author(s): VI Zalavadiya, VK Shah, DD Santani, MS Patel, JM Fosi, AK Chaudhary.

DOI: Not Available         Access: Open Access Read More

Author(s): AV Jaydeokar, DD Bandawane, SS Nipate , PD. Chaudhari.

DOI: Not Available         Access: Open Access Read More

Author(s): Sudhakar P, Poorana Pushkalai S, Sabarinath C, Priyadharshini S, Haripriya S

DOI: 10.5958/2321-5836.2018.00002.2         Access: Open Access Read More

Author(s): Mohibul Hoque, Ramanjaneyulu J, Veeresh Babu. D, Monirul Islam, Narayana Swamy VB.

DOI: 10.5958/2321-5836.2015.00013.0         Access: Open Access Read More

Author(s): Shoaib Ahmad

DOI: 10.5958/2321-5836.2017.00017.9         Access: Open Access Read More

Author(s): S Papaiah, V Ranjith Babu, T Sivanageswara Rao, DD Jackson, KL Senthilkumar.

DOI: Not Available         Access: Open Access Read More

Author(s): Suryawanshi CP, Patil VR, Chaudhari RY, Kale MK, Firake SD, Pimprikar RB, Patil MD, Yeshwante SB, Saindanem DS.

DOI: Not Available         Access: Open Access Read More

Author(s): Namrata Dwivedi, Bhavna Dwivedi, Skand Mishra, Yogeshwer Shukla.

DOI: Not Available         Access: Open Access Read More


Recent Articles




Tags