Author(s):
Swapnil S. Lad, Swati U. Kolhe, Omkar A. Devade, Chetashri N. Patil, Rohit D. Nalawade, Asawari P. Mansabdar
Email(s):
ladswapnil6995@gmail.com
DOI:
10.52711/2321-5836.2023.00023
Address:
Swapnil S. Lad, Swati U. Kolhe, Omkar A. Devade, Chetashri N. Patil, Rohit D. Nalawade, Asawari P. Mansabdar
Department of Pharmacology, AISSMS College of Pharmacy, Pune, Maharashtra - 411001.
*Corresponding Author
Published In:
Volume - 15,
Issue - 3,
Year - 2023
ABSTRACT:
Since the beginning of time people have used plants as a solution for different infections and/or diseases. With the approach of current synthetic medicines, plant medication has frequently been subjected to the edge of therapeutic modalities. However, it is progressively being recognized that the synthetic therapeutic agents have a few limitations particularly in ongoing chronic illnesses like hyperlipidaemia. Hyperlipidaemia is an ailment characterised by an expansion in at least one of the plasma lipids, including cholesterol, triglycerides, plasma lipoproteins such as low density lipoprotein (LDL) and very low density lipoprotein (VLDL) alongside diminished high-density lipoprotein (HDL) levels. Research is continuous to find more current medications and a few novel helpful targets are being investigated for hyperlipidaemia. In the current review, the types of hyperlipidaemia, lipid metabolism, causes and risk factors of hyperlipidaemia has been explained alongsidethe plant derived bioactiveand extracts that have been demonstrated in the past 15 years to have a potential in treatment of hyperlipidaemia has been discussed.
Cite this article:
Swapnil S. Lad, Swati U. Kolhe, Omkar A. Devade, Chetashri N. Patil, Rohit D. Nalawade, Asawari P. Mansabdar. Hyperlipidaemia: A Review of Literature. Research Journal of Pharmacology and Pharmacodynamics. 2023; 15(3):127-2. doi: 10.52711/2321-5836.2023.00023
Cite(Electronic):
Swapnil S. Lad, Swati U. Kolhe, Omkar A. Devade, Chetashri N. Patil, Rohit D. Nalawade, Asawari P. Mansabdar. Hyperlipidaemia: A Review of Literature. Research Journal of Pharmacology and Pharmacodynamics. 2023; 15(3):127-2. doi: 10.52711/2321-5836.2023.00023 Available on: https://rjppd.org/AbstractView.aspx?PID=2023-15-3-6
REFERENCES:
1. Lin C-F, Chang Y-H, Chien S-C, Lin Y-H, Yeh H-Y. Epidemiology of dyslipidemia in the Asia Pacific region. International Journal of Gerontology. 2018;12(1):2–6.doi:https://doi.org/10.1016/j.ijge.2018.02.010
2. Frederickson DS, Lee RS. A system for phenotyping hyperlipidemia. Circulation 1965; 31:321-7.
3. Stone NJ. Secondary causes of Hyperlipidemia. Medical Clinics of North America. 1994;78(1):117–41.doi:https://doi.org/10.1016/S0025-7125(16)30179-1
4. Block ER, Edwards D. Effect of plasma membrane fluidity on serotonin transport by endothelial cells. American Journal of Physiology-Cell Physiology. 1987;253(5): 672-678. doi: 10.1152/ajpcell.1987.253.5.c672
5. Brunner LJ, Vadiei K, Luke DR. Cyclosporine disposition in the hyperlipidemic rat model. Research Community.1988; 59(3):339–348.
6. Steven Benowitz Associate Director of Communications ERP. Researchers finetune genomic links to high blood lipid levels [Internet]. Genome.gov. [cited 2022Dec28]. Available from: https://www.genome.gov/researchers-finetune-genomic-links-to-high-blood-lipid-levels
7. FREDRICKSON DONALDS. An international classification of hyperlipidemias and hyperlipoproteinemias. Annals of Internal Medicine. 1971;75(3):471.doi:10.7326/0003-4819-75-3-471
8. Shattat GF. A review article on Hyperlipidemia: Types, treatments and new drug targets. Biomedical and Pharmacology Journal. 2014;7(2):399–409.doi: 10.13005/bpj/504
9. Stamler J. Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA: The Journal of the American Medical Association. 1986;256(20):2823–8.doi: 10.1001/jama.256.20.2823
10. Rose G, Shipley M. Plasma cholesterol concentration and death from coronary heart disease: 10 year results of the Whitehall Study. BMJ. 1986;293(6542):306–7.doi: 10.1136/bmj.293.6542.306
11. Gotto AM. Risk factor modification: Rationale for management of dyslipidemia. The American Journal of Medicine. 1998;104(2).doi: 10.1016/s0002-9343(98)00039-4
12. Castelli WP. Epidemiology of coronary heart disease: The framingham study. The American Journal of Medicine. 1984;76(2):4–12.doi: https://doi.org/10.1016/0002-9343(84)90952-5
13. Ramya KR, Batra K. Perception and knowledge of coronary heart disease among adolescents of Kerala. Asian Journal of Nursing Education and Research. 2015;5(3):327doi: 10.5958/2349-2996.2015.00067.1
14. Kaur S. A descriptive study to assess the prevalence of cardiovascular risk factors among adolescents in selected schools of Banga, district Shaheed Bhagat Singh Nagar, Punjab. Asian Journal of Nursing Education and Research. 2016;6(3):361.doi: 10.5958/2349-2996.2016.00068.9
15. Inkeles Stephen, Eisenberg Daniel. Hyperlipidaemia and coronary atherosclerosis. Medicine. 1981;60(2):110–23. doi:10.1097/00005792-198103000-00004
16. Kannel Williamb. Serum cholesterol, lipoproteins, and the risk of coronary heart disease. Annals of Internal Medicine. 1971;74(1):1. doi: 10.7326/0003-4819-74-1-1
17. Keys A. Coronary heart disease — the global picture. Atherosclerosis. 1975;22(2):149–92. doi: 10.1016/0021-9150(75)90001-5
18. Mahley RW, Palaoğlu KE, Atak Z, Dawson-Pepin J, Langlois AM, Cheung V, et al. Turkish heart study: Lipids, lipoproteins, and apolipoproteins. Journal of Lipid Research. 1995;36(4):839–59. doi:10.1016/s0022-2275(20)40067-7
19. Lavalle C, Alarcon-Segovia D, Del Giudice-Knipping JA, Fraga A. Association of Behçet's syndrome with HLA-B5 in the Mexican mestizo population. The Journal of Rheumatology. 1981;8(2):325-327. PMID: 7230164.
20. Steinberg D, Gotto, Jr AM. Preventing coronary artery disease by lowering cholesterol levels. JAMA. 1999;282(21):2043.doi: 10.1001/jama.282.21.2043
21. Abalkhail BA, Shawky S, Ghabrah TM, Milaat WA. Hypercholesterolemia and 5-year risk of development of coronary heart disease among university and school workers in Jeddah, Saudi Arabia. Preventive Medicine. 2000;31(4):390–5.doi: 10.1006/pmed.2000.0713
22. Sen A S A, Raju R. Comparative case control study on risk factors of coronary artery disease among sedentary and heavy workers. Asian Journal of Nursing Education and Research. 2021;:555–60.doi: 10.52711/2349-2996.2021.00130
23. Ogbeide DO, Karim A, Al-Khalifa IM, Siddique S. Population Based Study of Serum Lipid Levels in Al-Kharj Health Center, Saudi Arabia. Saudi MedicalJournal. 2004;25(12):1855-1857.
24. Al-Nozha MM, Arafah MR, Al-Mazrou YY, et al. Coronary artery disease in Saudi Arabia. Saudi Medical Journal. 2004;25(9):1165-1171. PMID: 15448760.
25. Saadi H, Carruthers SG, Nagelkerke N, Al-Maskari F, Afandi B, Reed R, et al. Prevalence of diabetes mellitus and its complications in a population-based sample in Al Ain, united arab emirates. Diabetes Research and Clinical Practice. 2007;78(3):369–77.doi: 10.1016/j.diabres.2007.04.008
26. Bonita R. Surveillance of risk factors for Noncommunicable Diseases: The WHO stepwise approach: Summary. Geneva: Noncommunicable Disease and Mental Health, World Health Organization; 2001.
27. WHO, EMRO, "stepwise WHO," 2005. - References - scientific research publishing. [Cited 2022Dec26]. Availablefrom:https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=623427
28. Al-Moosa S, Allin S, Jemiai N, Al-Lawati J, Mossialos E. Diabetes and urbanization in the Omani population: An Analysis of National Survey Data. Population Health Metrics. 2006;4(1). doi: 10.1186/1478-7954-4-5
29. Bener A, Zirie M, Janahi IM, Al-Hamaq AOAA, Musallam M, Wareham NJ. Prevalence of diagnosed and undiagnosed diabetes mellitus and its risk factors in a population-based study of Qatar. Diabetes Research and Clinical Practice. 2009;84(1):99–106. doi: 10.1016/j.diabres.2009.02.003
30. Selvi JT, Shanthi Rosy J. A descriptive study to assess the knowledge and attitude of coronary artery disease risk factors among adults in Christian Mission Hospital at Madurai, Tamilnadu. International Journal of Nursing Education and Research. 2021;:262–4.doi: 10.52711/2454-2660.2021.00062
31. Jain RB, Ducatman A. Associations between smoking and lipid/lipoprotein concentrations among us adults aged ≥20 years. Journal of Circulating Biomarkers. 2018;7: 1849454418779310. doi:10.1177/1849454418779310
32. Gepner AD, Piper ME, Johnson HM, Fiore MC, Baker TB, Stein JH. Effects of smoking and smoking cessation on lipids and lipoproteins: Outcomes from a randomized clinical trial. American Heart Journal. 2011;161(1):145–51. doi: 10.1016/j.ahj.2010.09.023
33. Jackson RT, Al-Mousa Z, Al-Raqua M, Prakash P, Muhanna AN. Multiple coronary risk factors in healthy older Kuwaiti males. European Journal of Clinical Nutrition. 2002;56(8):709–14.doi: 10.1038/sj.ejcn.1601379.
34. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA: The Journal of the American Medical Association. 2001;285(19):2486–97.doi: 10.1001/jama.285.19.2486
35. Weinreich M, Frishman WH. Antihyperlipidemic therapies targeting PCSK9. Cardiology in Review. 2014;22(3):140–6.doi: 10.1097/crd.0000000000000014
36. Senthilkumar T, Tamilselvi A. Risk factors of cardiovascular disease in adolescents: A systematic review. Asian Journal of Nursing Education and Research. 2021;11(1):151–6.doi: 10.5958/2349-2996.2021.00039.2
37. Parvin SK, Devakirubai, Santha NJ, Selvarani G. Assessment of risk status for coronary artery disease in terms of selected risk factors among bus drivers. Asian Journal of Nursing Education and Research. 2020;10(3):291.doi: 10.5958/2349-2996.2020.00061.0
38. Murad S, Seema, Ghaffar A, Abbasi GM, Rehman IU, Qadir A. Abnormal lipid parameters and herbs. Asian Journal of Pharmaceutical Research. 2019;9(3):155.doi: 10.5958/2231-5691.2019.00024.8
39. Ramasamy I. Recent advances in physiological lipoprotein metabolism. Clinical Chemistry and Laboratory Medicine (CCLM). 2014;52(12).doi:10.1515/cclm-2013-0358
40. Hussain M. Intestinal lipid absorption and lipoprotein formation. Current Opinion in Lipidology. 2014;25(3):200–6.doi:10.1097/mol.0000000000000084
41. Iqbal J, & Hussain MM. Intestinal lipid absorption. American journal of physiology. Endocrinology and metabolism.2009; 296(6): E1183–E1194. doi:https://doi.org/10.1152/ajpendo.90899.2008
42. Wolska A, Dunbar RL, Freeman LA, Ueda M, Amar MJ, Sviridov DO, et al. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis. 2017;267:49–60.doi:10.1016/j.atherosclerosis.2017.10.025
43. Cooper AD. Hepatic uptake of Chylomicron remnants. Journal of Lipid Research. 1997;38(11):2173–92.doi:10.1016/s0022-2275(20)34932-4
44. Daniels TF, Killinger KM, Michal JJ, Wright Jr. RW, Jiang Z. Lipoproteins, cholesterol homeostasis and Cardiac Health. International Journal of Biological Sciences. 2009;:474–88.doi:10.7150/ijbs.5.474
45. Fisher E, Cohen D. Lipoprotein metabolism, dyslipidemia, and nonalcoholic fatty liver disease. Seminars in Liver Disease. 2013;33(04):380–8.doi:10.1055/s-0033-1358519
46. Willnow TE. Mechanisms of Hepatic Chylomicron remnant clearance. Diabetic Medicine. 1997;14(S3).doi:10.1002/(sici)1096-9136(199708)14:3+<s75::aid-dia449>3.0.co;2-9
47. Beisiegel U. Lipoprotein metabolism. European heart journal.1998;19 Suppl A: A20–A23.PMID: 9519338
48. Ebin.pub. Mansoura Clinical Pharmacology [2] [Internet]. ebin.pub. EBIN.PUB; 2016 [cited 2022Dec31]. Available from: https://ebin.pub/mansoura-clinical-pharmacology-2.html
49. Katzung B. Drugs used in dyslipidemia. In: Basic & Clinical Pharmacology. 14th ed. New York, California: McGraw-Hill Education; 2015. p. 626–41.
50. Tripathi KD. Hypolipidaemic drugs and plasma expanders. In: Essentials of Medical Pharmacology.7th ed. New Delhi: Jaypee Brothers Medical Publishers (p) Ltd; 2013. P. 634–46.
51. WHO establishes the Global Centre for Traditional Medicine in India [Internet]. World Health Organization. World Health Organization; 2022 [cited 2023Jan2]. Available from: https://www.who.int/news/item/25-03-2022-who-establishes-the-global-centre-for-traditional-medicine-in-india
52. Lapinleimu H, Salo P, Routi T, Lapinleimu H, Jokinen E, Välimäki I, et al. Prospective randomised trial in 1062 infants of diet low in saturated fat and cholesterol. The Lancet. 1995;345(8948):471–6.doi:https://doi.org/10.1016/S0140-6736(95)90580-4
53. Agarwal RC, Singh SP, Saran RK, Das SK, Sinha N, Asthana OP, Gupta PP, Nityanand S, Dhawan BN, Agarwal SS. Clinical trial of gugulipid--a new hypolipidemic agent of plant origin in primary hyperlipidemia. The Indian journal of medical research.1986; 84: 626–634.PMID: 3552974
54. Lee I-A, Lee JH, Baek N-I, Kim D-H. Antihyperlipidemic effect of Crocin isolated from the fructus of gardenia jasminoides and its metabolite crocetin. Biological and Pharmaceutical Bulletin. 2005;28(11):2106–10.doi:https://doi.org/10.1248/bpb.28.2106
55. Gupta S, Sharma SB, Bansal SK, Prabhu KM. Antihyperglycemic and hypolipidemic activity of aqueous extract of Cassia auriculata L. leaves in experimental diabetes. Journal of Ethnopharmacology. 2009;123(3):499–503.doi: https://doi.org/10.1016/j.jep.2009.02.019
56. Maniyar Y, Bhixavatimath P. Antihyperglycemic and hypolipidemic activities of aqueous extract of Carica papaya Linn. leaves in alloxan-induced diabetic rats. Journal of Ayurveda and Integrative Medicine. 2012;3(2):70.doi: 10.4103/0975-9476.96519
57. Assad T, Khan RA, Feroz Z. Evaluation of hypoglycemic and hypolipidemic activity of methanol extract of brassica oleracea. Chinese Journal of Natural Medicines. 2014;12(9):648–53.doi: 10.1016/s1875-5364(14)60099-6
58. Emordi JE, Agbaje EO, Oreagba IA, Iribhogbe OI. Antidiabetic and hypolipidemic activities of hydroethanolic root extract of uvaria chamae in streptozotocin induced diabetic albino rats. BMC Complementary and Alternative Medicine. 2016;16(1). doi: 10.1186/s12906-016-1450-0
59. Liu H, Qi X, Yu K, Lu A, Lin K, Zhu J, et al. AMPK activation is involved in hypoglycemic and hypolipidemic activities of mogroside-rich extract from siraitia grosvenorii (Swingle) fruits on high-fat diet/streptozotocin-induced diabetic mice. Food & Function. 2019;10(1):151–62.doi: 10.1039/C8FO01486H
60. Kim HY, Jeong DM, Jung HJ, Jung YJ, Yokozawa T, Choi JS. Hypolipidemic effects of Sophora flavescens and its constituents in poloxamer 407-induced hyperlipidemic and cholesterol-fed rats. Biological and Pharmaceutical Bulletin. 2008;31(1):73–8.doi:10.1248/bpb.31.73
61. Min S-W, Kim D-H. Kakkalide and Irisolidone: HMG-COA reductase inhibitors isolated from the flower of Pueraria Thunbergiana. Biological and Pharmaceutical Bulletin. 2007;30(10):1965–8.doi:https://doi.org/10.1248/bpb.30.1965
62. Ji W, Gong BQ. Hypolipidemic effects and mechanisms of Panax Notoginseng on lipid profile in hyperlipidemic rats. Journal of Ethnopharmacology. 2007;113(2):318–24. doi:https://doi.org/10.1016/j.jep.2007.06.022
63. Kwon S-H, Ahn I-S, Kim S-O, Kong C-S, Chung H-Y, Do M-S, et al. Anti-obesity and hypolipidemic effects of black soybean anthocyanins. Journal of Medicinal Food. 2007;10(3):552–6.doi:https://doi.org/10.1089/jmf.2006.147
64. Ko J-H, Lee S-J, Lim K-T. Hypolipidemic effect and antioxidant activity of glycoprotein isolated from Ulmus Davidiana Nakai in Triton WR-1339-treated mouse. Cell Biochemistry and Function. 2007;25(5):495–500.doi:https://doi.org/10.1002/cbf.1337
65. Lee C-L, Hung H-K, Wang J-J, Pan T-M. Red Mold Dioscorea has greater hypolipidemic and antiatherosclerotic effect than traditional red mold rice and unfermented Dioscorea in Hamsters. Journal of Agricultural and Food Chemistry. 2007;55(17):7162–9.doi:https://doi.org/10.1021/jf071293j
66. Trinh HT, Han SJ, Kim SW, Lee YC, Kim DH.Bifidus Fermentation Increases Hypolipidemic and Hypoglycemic Effects of Red Ginseng.Journal of Microbiology and Biotechnology.2007;17(7):1127-33.
67. Xie W, Wang W, Su H, Xing D, Cai G, Du L. Hypolipidemic mechanisms of ananas comosus L. leaves in mice: Different from fibrates but similar to statins. Journal of Pharmacological Sciences. 2007;103(3):267–74.doi: 10.1254/jphs.fp0061244
68. Chenni A, Yahia DA, Boukortt FO, Prost J, Lacaille-Dubois MA, Bouchenak M. Effect of aqueous extract of Ajuga Iva Supplementation on plasma lipid profile and tissue antioxidant status in rats fed a high-cholesterol diet. Journal of Ethnopharmacology. 2007;109(2):207–13.doi: https://doi.org/10.1016/j.jep.2006.05.036
69. Muthu AK, Sethupathy S, Manavalan R, Karar PK. Antioxidant potential of methanolic extract of dolichos biflorus Linn in high fat diet fed rabbits. Indian Journal of Pharmacology. 2006;38(2):131.doi:10.4103/0253-7613.24620